Exhibit D - Proposed Building Plans

AREA CALCULATIONS

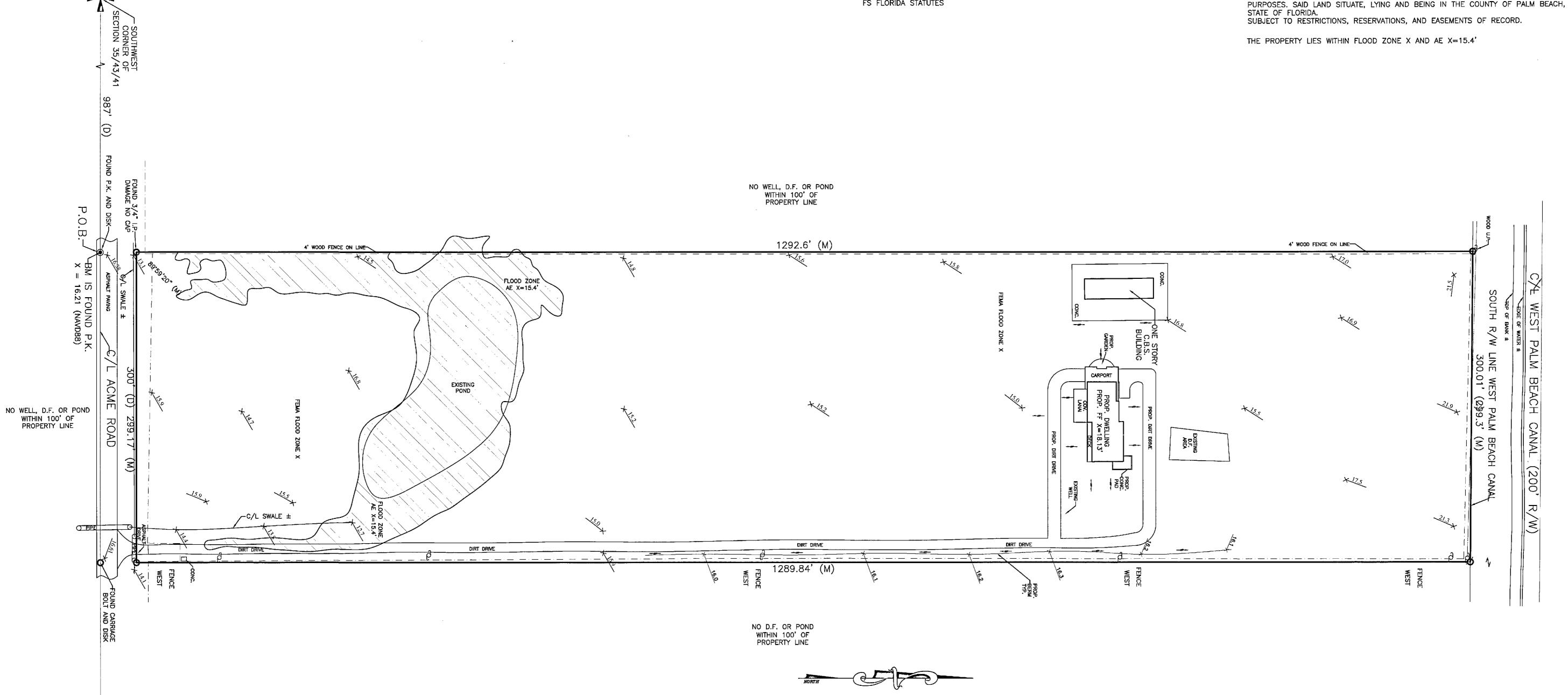
TOTAL AREA

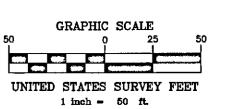
AIR CONDITIONED AREA		
FIRST FLOOR	2228	SQ. FT.
SECOND FLOOR	1173	SQ. FT.
TOTAL AIR CONDITIONED AREA	3461	SQ. FT.
NON AIR CONDITIONED AREA		
COVERED LANAI	416	SQ. FT.
CARPORT	350	SQ. FT.
BALCONY	177	SQ. FT.
TOTAL NON AIR CONDITIONED AREA	943	SQ. FT.

4,404 SQ. FT.

SITE NOTES

- 1. VERIFY LOCATION OF UTILITIES WITH SUBDIVISION BEFORE PROCEEDING WITH WORK.
- 2. DRAINAGE TO BE INDICATED ON LANDSCAPE PLAN.
- 3. MAILBOX TO BE PROVIDED PER ARB GUIDELINES.
- 4. CONNECTION INSPECTION OF UTILITIES REQUIRED PRIOR TO BACKFILL
- 5. CONTRACTOR TO HAVE CERTIFIED FLORIDA SURVEYOR LAYOUT BUILDING ON LOT TO ASSURE THAT NO SETBACKS OR EASEMENTS ARE ENCROACHED
- CONTRACTOR SHALL PROVIDE SOIL BORING TEST AND DEMUCK AND REPACK SOIL AS REQUIRED.
- 7. CONTRACTOR TO PROVIDE (1) 4" AND (1) 6" PVC SLEEVE UNDER DRIVEWAY
- 8. ALL EXTERIOR MECHANICAL SCREEN WALLS MUST BE TALL ENOUGH TO VISUALLY SCREEN THE EQUIPMENT FROM NEIGHBORING PROPERTIES., YET REMAIN WITHIN THE 6' HEIGHT LIMIT, IF WITHIN THE SETBACK. GROUP ALL CONDUIT, DISCONNECTS, METERS, ETC. WITHIN THE SCREEN WALL LOCATIONS. A SOLID GATE MUST BE INSTALLED AT ALL MECHANICAL EQUIPMENT LOCATIONS.


DESIGN CODES:
FLORIDA BUILDING CODE 6TH EDITION (2017)
FBC ENERGY CONSERVATION 6TH EDITION (2017)
FBC RESIDENTIAL 6TH EDITION (2017)
FBC MECHANICAL 6TH EDITION (2017)
FBC PLUMBING 6TH EDITION (2017)
NEC NFPA 70 2014 EDITION
FS FLORIDA STATUTES


DOCUMENT QUALIFICATION

THIS DRAWING WAS PREPARED BASED ON INFORMATION PROVIDED BY THE OWNER AND OR THE CONTRACTOR IN THE FORM OF A BOUNDARY SURVEY PREPARED BY EXACTA LAND SURVEYORS, INC. DATED 2-17-15 DRAWING NO. 1502.1310 SHEET 1 OF 2. USE WITHOUT VERIFICATION WILL BE AT THE USER'S SOLE RISK. THE USER SHALL INDEMNIFY THE ARCHITECT "VILLAGE ARCHITECTS AIA" FROM ALL CLAIMS AND LOSSES RESULTING FROM SUCH USE. THE DELIVERY OF THIS DRAWING TO THE USER SHOULD NOT BE CONSTRUED TO PROVIDE AN EXPRESS WARRANTY OR A GUARANTEE TO ANYONE THAT CERTAIN CONDITIONS EXIST OR THAT THE USE OF THIS DRAWING IMPLIES THE REVIEW AND APPROVAL BY THE ARCHITECT OF ANY SHOP DRAWING BASED ON THIS INFORMATION. USE OF THIS DRAWING IN NO WAY RELIEVES ANY OTHER PARTY FROM MEETING REQUIREMENTS IMPOSED BY CONTRACT OR OTHER MEANS.

PARTIAL LEGAL DESCRIPTION

COMMENCING AT THE SOUTHEAST CORNER OF SECTION 35, TOWNSHIP 43 SOUTH, RANGE 41 EAST (35-43/41) THENCE RUN EASTERLY, ALONG THE SOUTH BOUNDARY OF SAID SECTION 35, FOR A DISTANCE OF 987 FEET TO A POINT OF BEGINNING; THENCE RUN NORTHERLY, ALONG A LINE WHICHFORMS AN ANGLE OF 90°00'00" TO THE LEFT OF A CONTINUATION OF THE LAST DESCRIBED COURSE, TO A POINT OF INTERSECTION WITH THE SOUTH RIGHT-OF-WAY LINE OF THE WEST PALM BEACH CANAL (SAID SOUTH RIGHT-OF-WAY LINE BEING 100 FEET SOUTH OF AND PARALLEL TO THE CENTER LINE OF SAID WEST PALM BEACH CANAL); THENCE RUN EASTERLY, ALONG THE SOUTH RIGHT-OF-WAY LINE OF SAID WEST PALM BEACH CANAL, FOR A DISTANCE OF 300 FEET, MORE OR LESS, TO A POINT OF INTERSECTION WITH A LINE 300 FEET EAST OF AND PARALLEL TO THE WESTERLY BOUNDARY OF THE PARCEL HEREIN DESCRIBED: THENCE RUN SOUTHERLY, ALONG A LINE WHICH IS 300 FEET EAST OF AND PARALLEL TO THE SAID WEST LINE OF THE PARCEL HEREIN DESCRIBED, TO A POINT OF INTERSECTION WITH THE SOUTH LINE OF SAID SECTION 35; THENCE RUN WESTERLY, ALONG THE SOUTH LINE OF SAID SECTION 35, FOR A DISTANCE OF 300 FEET TO THE POINT OF BEGINNING. EXCEPTING THEREFROM, THE SOUTH 35 FEET THEREOF TO BE USED FOR ROAD PURPOSES. SAID LAND SITUATE, LYING AND BEING IN THE COUNTY OF PALM BEACH,

VILLAGE

ARCHITECTS AIA
400 N CYPRESS DRIVE, SUITE 21
Tequesta, FL 33469

www.Village-Architects.com AA26001195

Phone: 561-743-4959

Fax: 561-743-1225

REST FLORIDA DEVELOPMENT

Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc.
Copyright (C) 2020

As Principal of Village Architects AIA, Inc.

Copyright © 2020

Village Architects AIA

All rights reserved.

These drawings are the

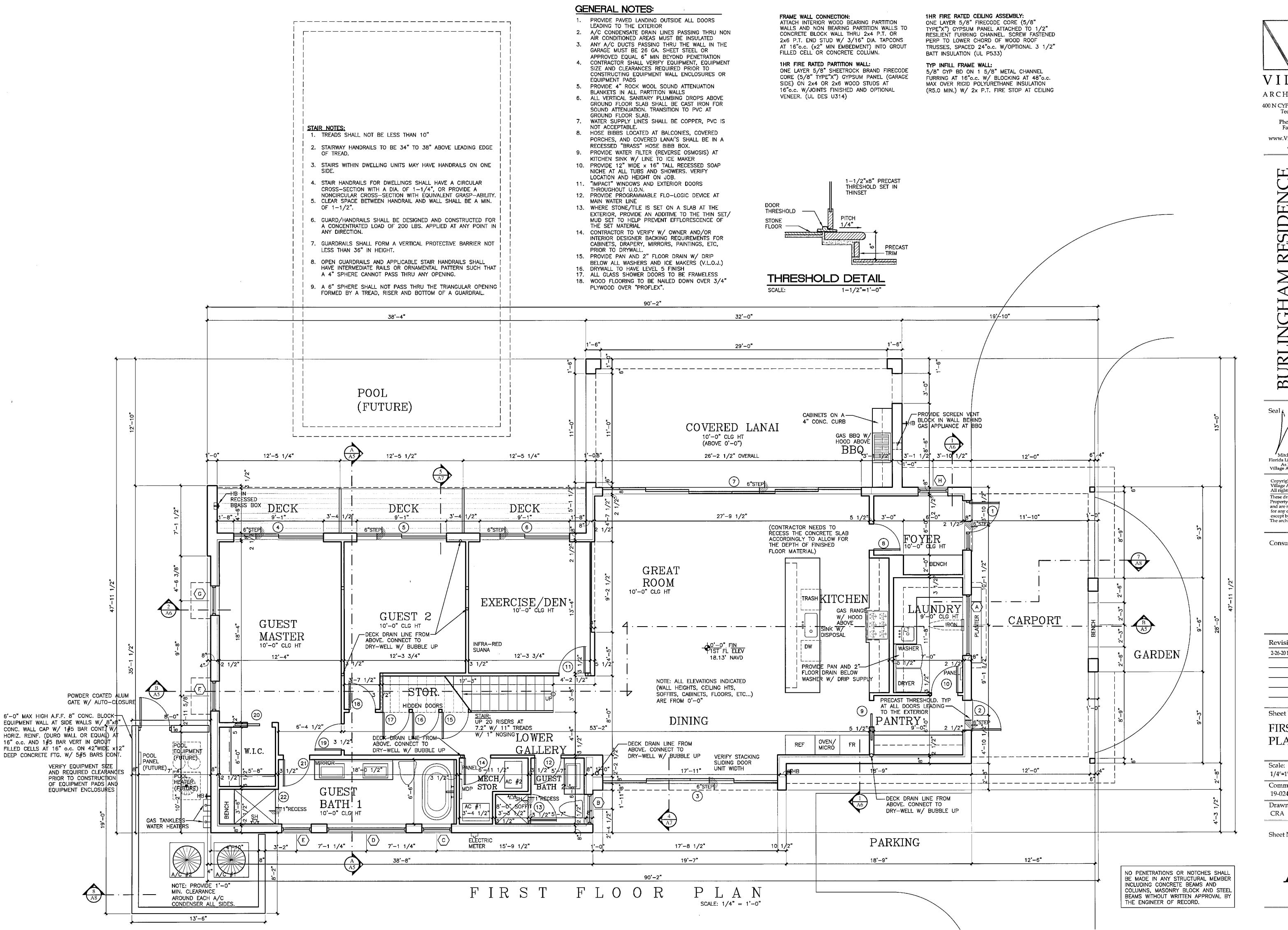
Property of the architect and are not to be used for any other projects except by agreement with The architect in writing.

Consultant:

Revisions:

2-26-20 PERMIT SET

Sheet Title:
SITE PLAN


Scale:
1" = 50'-0"

Comm.: Date:
19-024 8-23-19

Drawn: Checked:
CRA MEM

Sheet No.

SP1

400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469 Phone: 561-743-4959

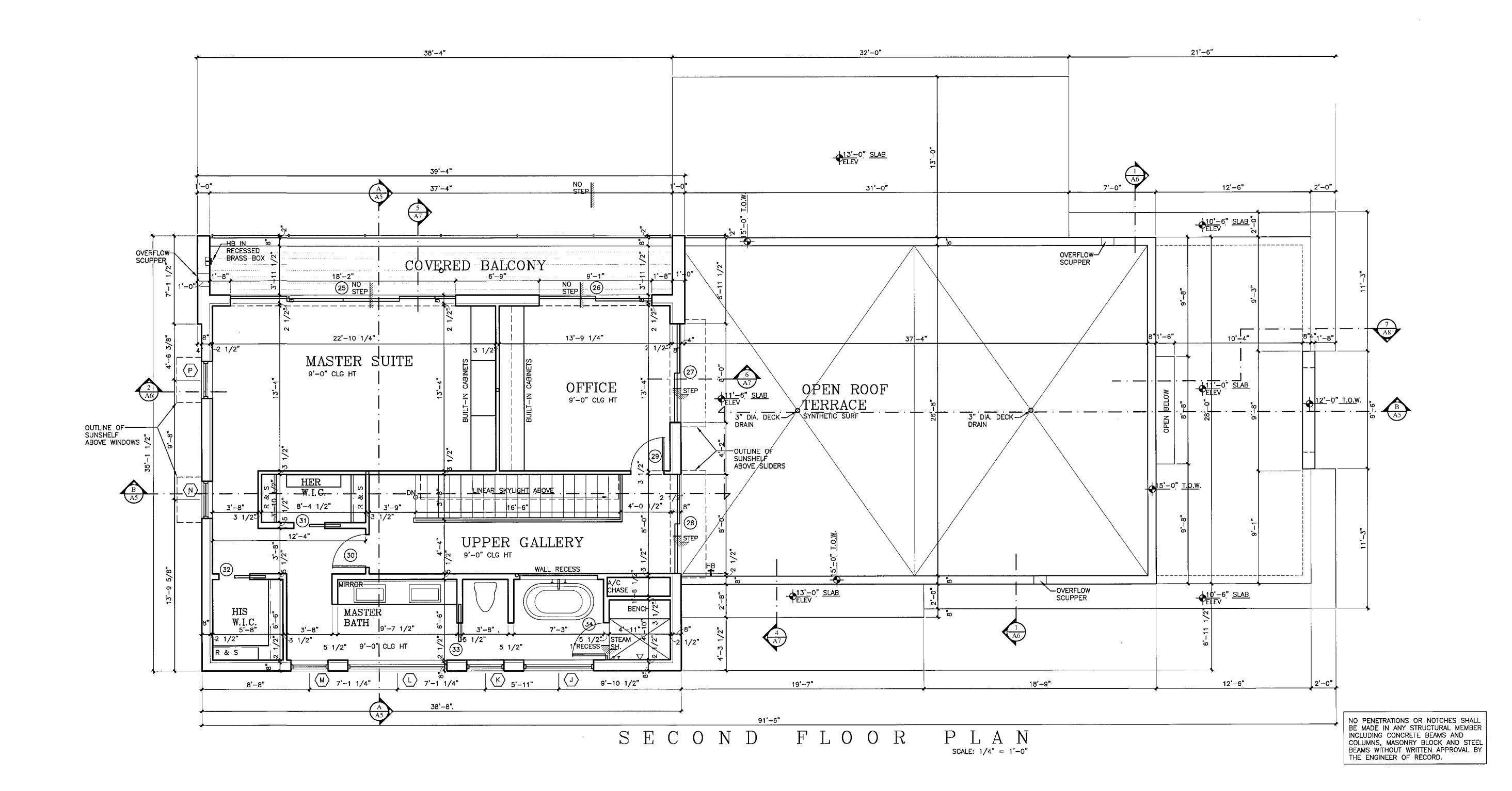
Fax: 561-743-1225 www.Village-Architects.com AA26001195

> RESIDEN BURLIN

Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc.

Copyright © 2020 Village Architects AIA All rights reserved. These drawings are the Property of the architect and are not to be used for any other projects except by agreement with The architect in writing

Consultant:


Revisions: 2-26-20 PERMIT SET

Sheet Title:

FIRST FLOOR PLAN

1/4"=1'-0" Comm.: 8-23-19 19-024 Drawn: Checked: CRA MEM

Sheet No.

ARCHITECTS AIA
400 N CYPRESS DRIVE, SUITE 21
Tequesta, FL 33469

Phone: 561-743-4959 Fax: 561-743-1225

www.Village-Architects.com
AA26001195

3URLINGHAM RESIDENCE
11802 ACME ROAD
WELLINGTON, FLORIDA

Seal:

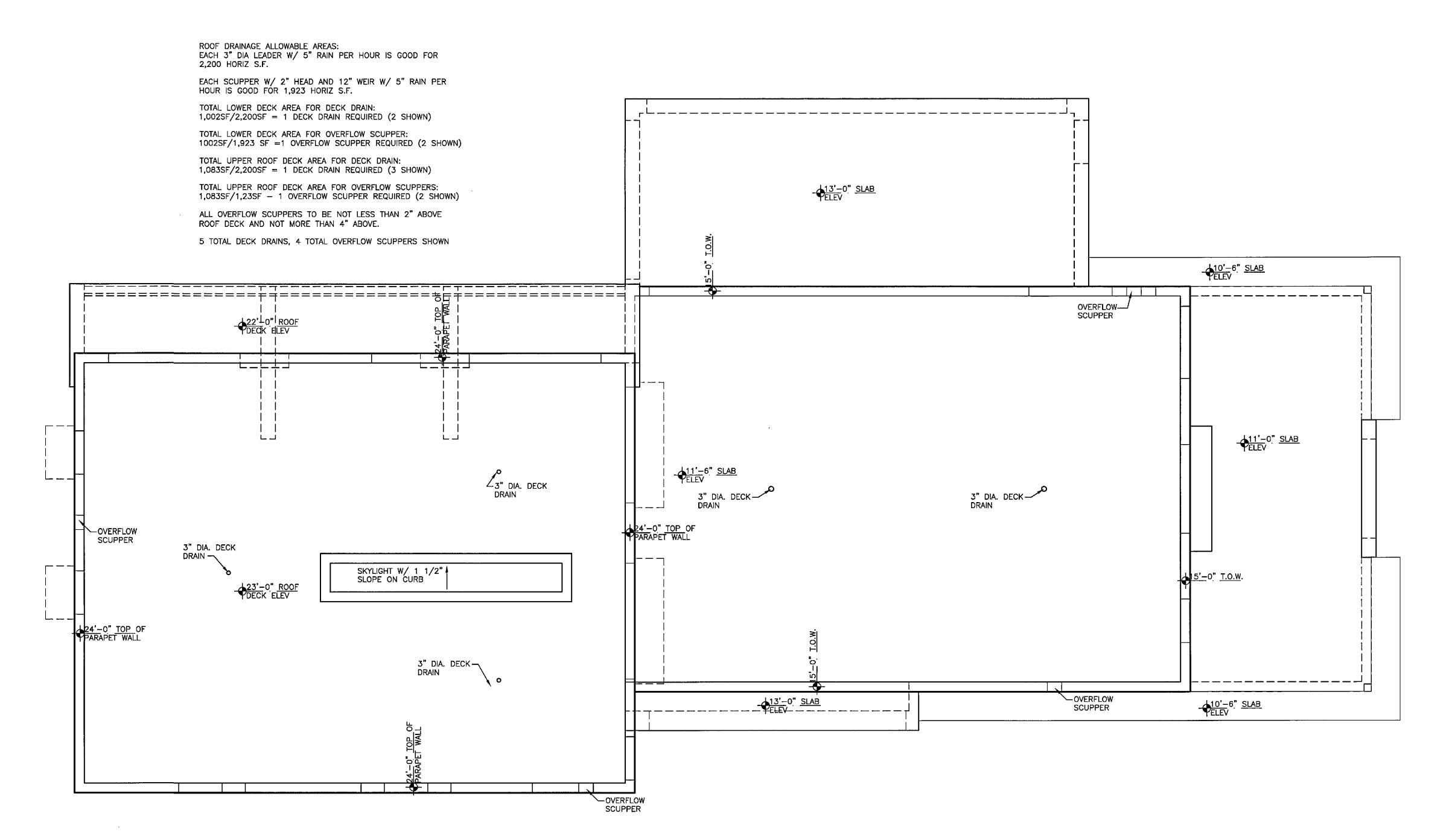
Mitchell E, Miller
Florida License No. AR91772
As Principal of
Village Architects AIA, Inc.

Copyright © 2020
Village Architects AIA
All rights reserved.

These drawings are the
Property of the architect
and are not to be used
for any other projects
except by agreement with
The architect in writing.

Consultant:

Revisions :	
2-26-20 PERMIT SET	-


Sheet Title:

SECOND FLOOR PLAN

Scale: 1/4"=1'-0"	
Comm. : 19-024	Date : 8-23-19
Drawn : CRA	Checked : MEM

Sheet No.

VILLAGE
ARCHITECTS AIA
400 N CYPRESS DRIVE, SUITE 21
Tequesta, FL 33469

Phone: 561-743-4959 Fax: 561-743-1225

www.Village-Architects.com AA26001195

BURLINGHAM RESIDENCE
11802 ACME ROAD
WELLINGTON, FLORIDA

Mitchell E. Miller
Florida License No. AR91772
As Principal of
Village Architects AIA, Inc.

Copyright © 2020
Village Architects AIA
All rights reserved.

These drawings are the
Property of the architect
and are not to be used
for any other projects
except by agreement with
The architect in writing.

Consultant:

Revisions:
2-26-20 PERMIT SET

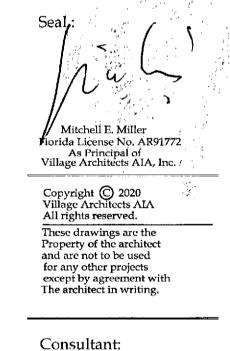
Sheet Title:

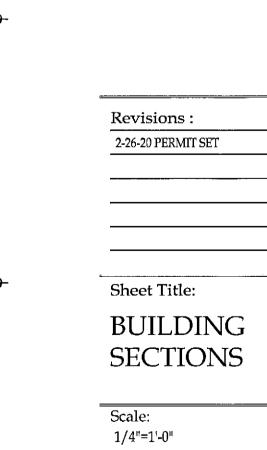
ROOF PLAN

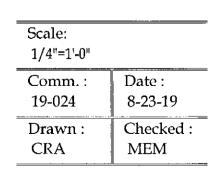
Scale:
1/4"=1'-0"

Comm.: Date:
19-024 8-23-19

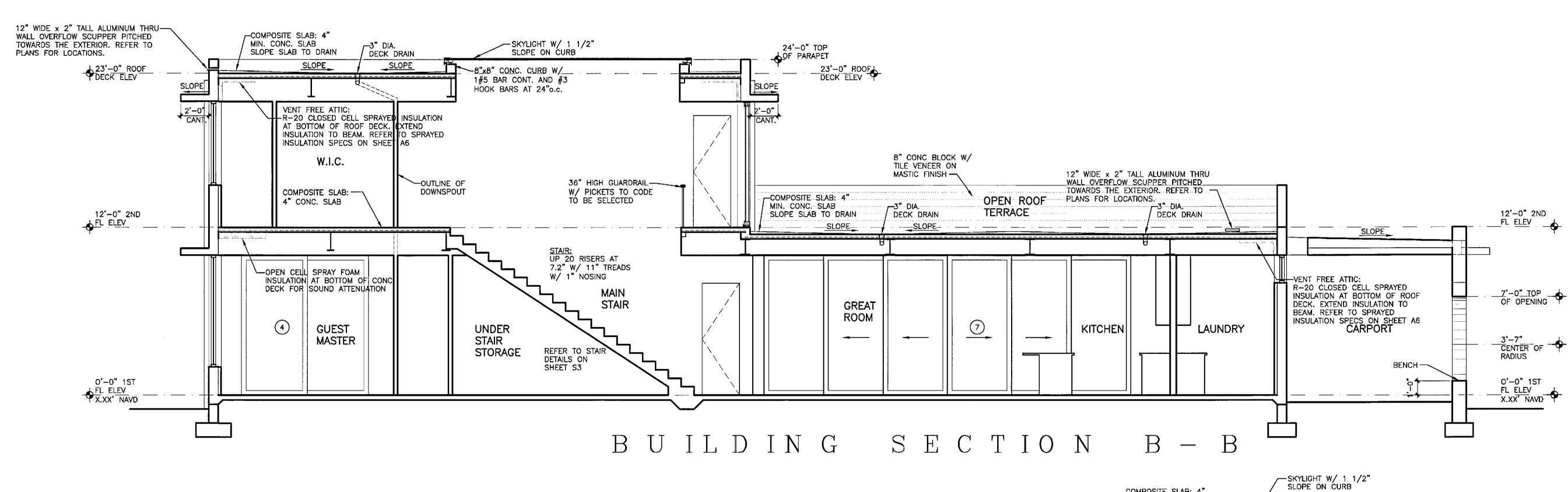

Drawn: Checked:
CRA MEM

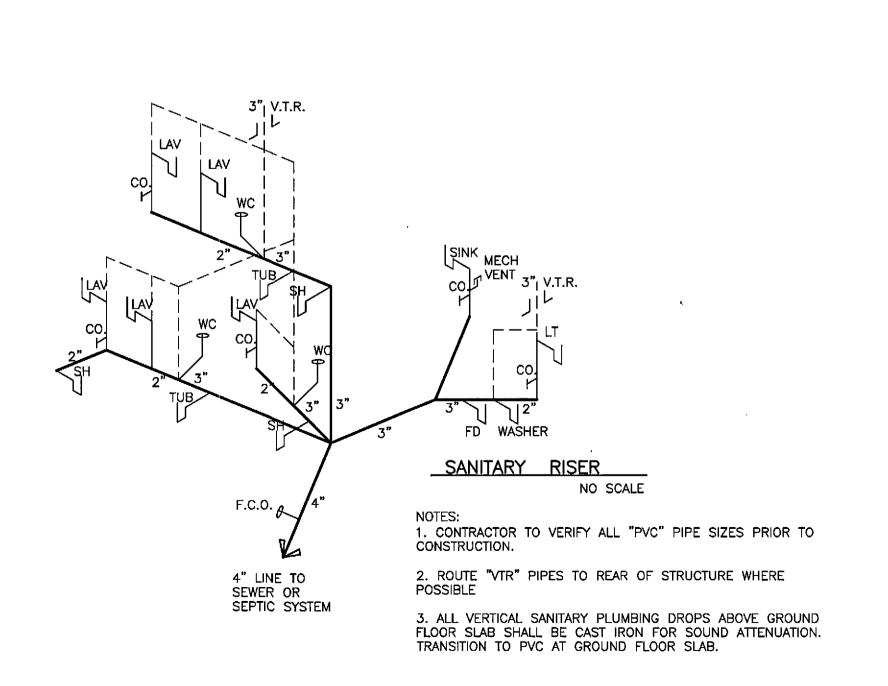

Sheet No.

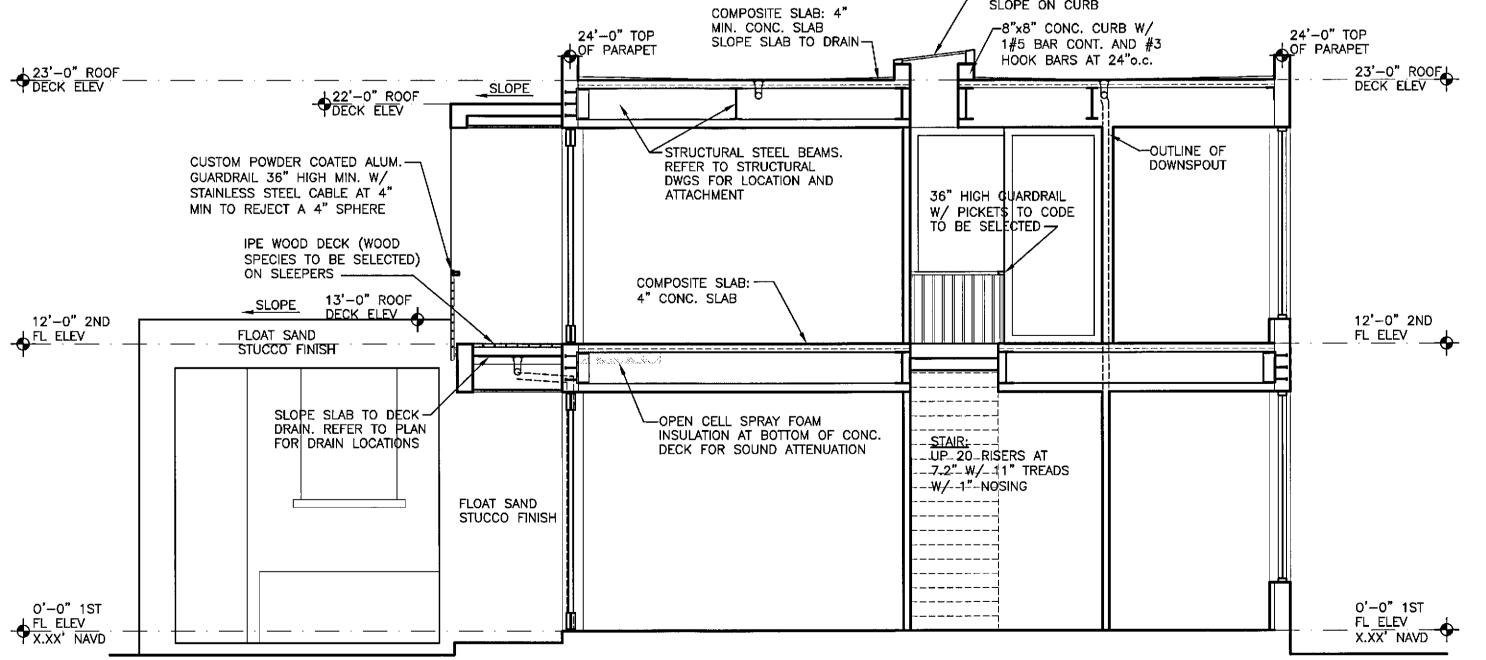

NO PENETRATIONS OR NOTCHES SHALL BE MADE IN ANY STRUCTURAL MEMBER INCLUDING CONCRETE BEAMS AND COLUMNS, MASONRY BLOCK AND STEEL BEAMS WITHOUT WRITTEN APPROVAL BY THE ENGINEER OF RECORD.


A3

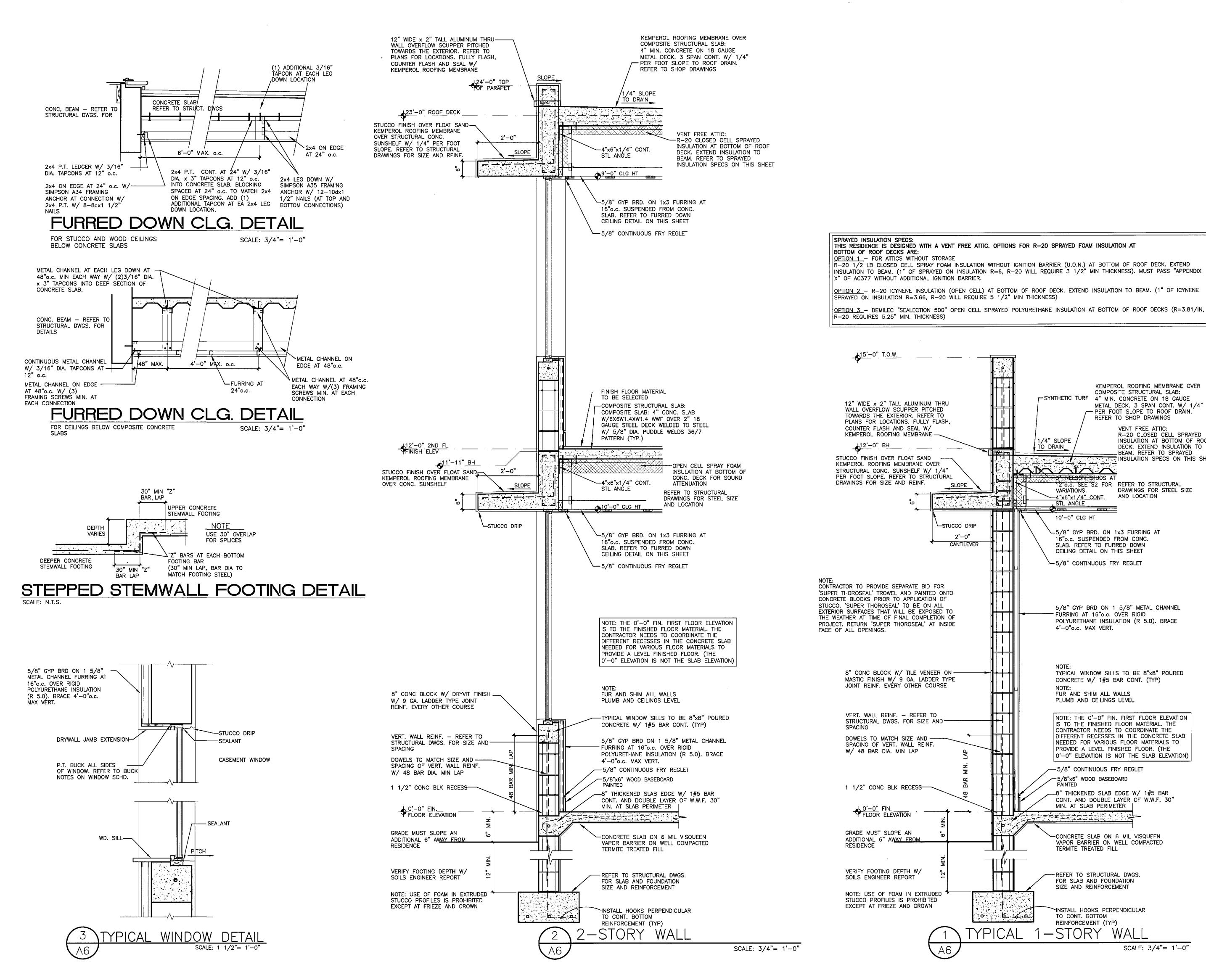
MAR 0 4 2020






Sheet No.

A5


MAR 0 4 2020

BUILDING SECTION A - A

Phone: 561-743-4959 Fax: 561-743-1225 www.Village-Architects.com AA26001195

RESIDEN

KEMPEROL ROOFING MEMBRANE OVER

METAL DECK. 3 SPAN CONT. W/ 1/4"

R-20 CLOSED CELL SPRAYED

DECK. EXTEND INSULATION TO BEAM. REFER TO SPRAYED

DRAWINGS FOR STEEL SIZE

INSULATION AT BOTTOM OF ROOF

COMPOSITE STRUCTURAL SLAB:

— PER FOOT SLOPE TO ROOF DRÁIN.

VENT FREE ATTIC:

REFER TO SHOP DRAWINGS

-SYNTHETIC TURF 4" MIN. CONCRETE ON 18 GAUGE

12"o.c. SEE S2 FOR REFER TO STRUCTURAL

5/8" GYP BRD ON 1 5/8" METAL CHANNEL

POLYURETHANE INSULATION (R 5.0). BRACE

TYPICAL WINDOW SILLS TO BE 8"x8" POURED

NOTE: THE 0'-0" FIN. FIRST FLOOR ELEVATION

DIFFERENT RECESSES IN THE CONCRETE SLAB

0'-0" ELEVATION IS NOT THE SLAB ELEVATION)

NEEDED FOR VARIOUS FLOOR MATERIALS TO

IS TO THE FINISHED FLOOR MATERIAL. THE

CONTRACTOR NEEDS TO COORDINATE THE

PROVIDE A LEVEL FINISHED FLOOR. (THE

_8" THICKENED SLAB EDGE W/ 1#5 BAR

-CONCRETE SLAB ON 6 MIL VISQUEEN

VAPOR BARRIER ON WELL COMPACTED

CONT. AND DOUBLE LAYER OF W.W.F. 30"

CONCRETE W/ 1#5 BAR CONT. (TYP)

FUR AND SHIM ALL WALLS

PLUMB AND CEILINGS LEVEL

-5/8" CONTINUOUS FRY REGLET

√5/8"x6" WOOD BASEBOARD

MIN. AT SLAB PERIMETER

TERMITE TREATED FILL

-REFER TO STRUCTURAL DWGS.

INSTALL HOOKS PERPENDICULAR

SCALE: 3/4"= 1'-0"

FOR SLAB AND FOUNDATION

SIZE AND REINFORCEMENT

TO CONT. BOTTOM REINFORCEMENT (TYP)

4"x6"x1/4" CONT. AND LOCATION
STL ANGLE

-5/8" GYP BRD. ON 1x3 FURRING AT

16"o.c. SUSPENDED FROM CONC.

SLAB. REFER TO FURRED DOWN

CEILING DETAIL ON THIS SHEET

FURRING AT 16"o.c. OVER RIGID

4'-0"o.c. MAX VERT.

►5/8" CONTINUOUS FRY REGLET

TO DRAIN_

STUCCO DRIP

2'-0"

CANTILEVER

VARIATIONS.

10'-0" CLG HT

12" WIDE x 2" TALL ALUMINUM THRU

WALL OVERFLOW SCUPPER PITCHED

TOWARDS THE EXTERIOR. REFER TO

PLANS FOR LOCATIONS. FULLY FLASH,

8" CONC BLOCK W/ TILE VENEER ON -

MASTIC FINISH W/ 9 GA. LADDER TYPE

JOINT REINF. EVÉRY OTHER COURSE

VERT. WALL REINF. - REFER TO

DOWELS TO MATCH SIZE AND -

SPACING OF VERT. WALL REINF.

W/ 48 BAR DIA. MIN LAP

1 1/2" CONC BLK RECESS

FLOOR ELEVATION

GRADE MUST SLOPE AN

RESIDENCE

ADDITIONAL 6" AWAY FROM

VERIFY FOOTING DEPTH W/ SOILS ENGINEER REPORT

NOTE: USE OF FOAM IN EXTRUDED STUCCO PROFILES IS PROHIBITED EXCEPT AT FRIEZE AND CROWN

STRUCTURAL DWGS. FOR SIZE AND-

COUNTER FLASH AND SEAL W/

KEMPEROL ROOFING MEMBRANE -

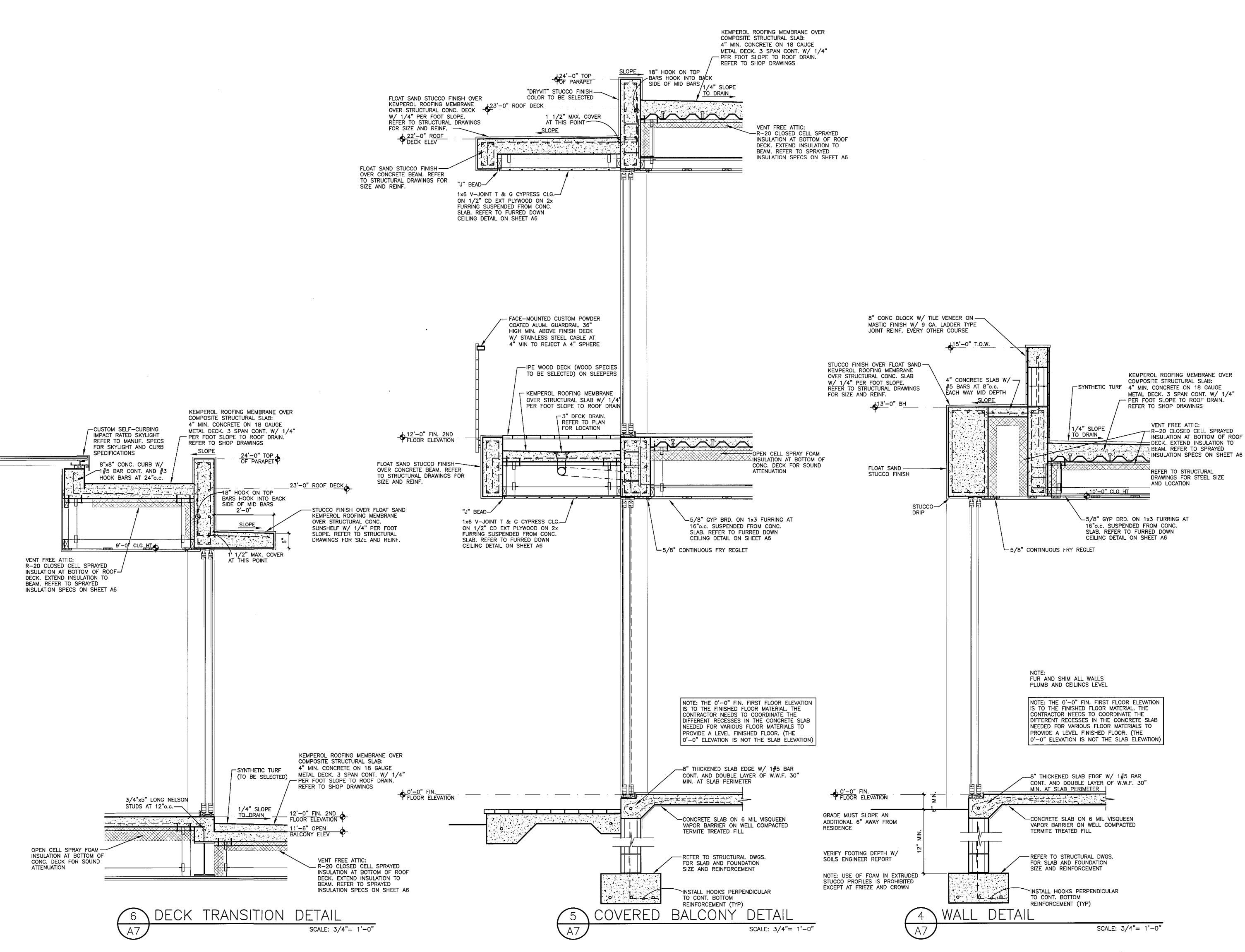
B

INSULATION SPECS ON THIS SHEET Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc. Village Architects AIA All rights reserved.

These drawings are the Property of the architect and are not to be used for any other projects except by agreement with The architect in writing.

Consultant: MCR PROFESSIONAL ENGINEERING, INC. CERTIFICATE OF AUTHORIZATION # 26967 3733 Atlantic Road Palm Beach Gardens, FL 33410 PH: (561) 863-3393

MICHAEL BABER


FLORIDA PROFESSIONAL ENGINEER, 5257 (FOR STRUCTURE ONLY) Revisions:

2-26-20 PERMIT SET

Sheet Title: **DETAILS**

Scale: 3/4"=1'-0" Date: Comm.: 19-024 8-23-19 Checked: Drawn : CRA MEM

Sheet No.

ARCHITECTS AIA 400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469

> Phone: 561-743-4959 Fax: 561-743-1225

www.Village-Architects.com

AA26001195 CE

RESIDEN BURLIN

Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc.

Copyright © 2020 Village Architects AIA All rights reserved. These drawings are the Property of the architect and are not to be used for any other projects except by agreement with The architect in writing.

Consultant:

MCR PROFESSIONAL ENGINEERING, INC. CERTIFICATE OF AUTHORIZATION # 2696 3733 Atlantic Road Palm Beach Gardens, FL 33410 PH: (561) 863-3393

MICHAEL BABER (FOR STRUCTURE ONLY)

Revisions: 2-26-20 PERMIT SET

Sheet Title:

DETAILS

Scale: 3/4"=1'-0" Comm.: 19-024 8-23-19 Drawn: Checked: MEM

Sheet No.

400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469

Phone: 561-743-4959 Fax: 561-743-1225

www.Village-Architects.com AA26001195

RESIDEN

BURLIN

Mitchell E. Miller

As Principal of

Copyright © 2020 Village Architects AIA

These drawings are the

Property of the architect

except by agreement with

ENGINEERING, INC.

3733 Atlantic Road Palm Beach Gardens, FL 33410 PH: (561) 863-3393

MICHAEL BABER FLORIDA PROFESSIONAL ENGINEER, 52575 (FOR STRUCTURE ONLY)

The architect in writing.

Consultant:

Revisions:

Sheet Title:

Scale:

3/4"=1'-0"

Comm.:

19-024

Drawn:

CRA

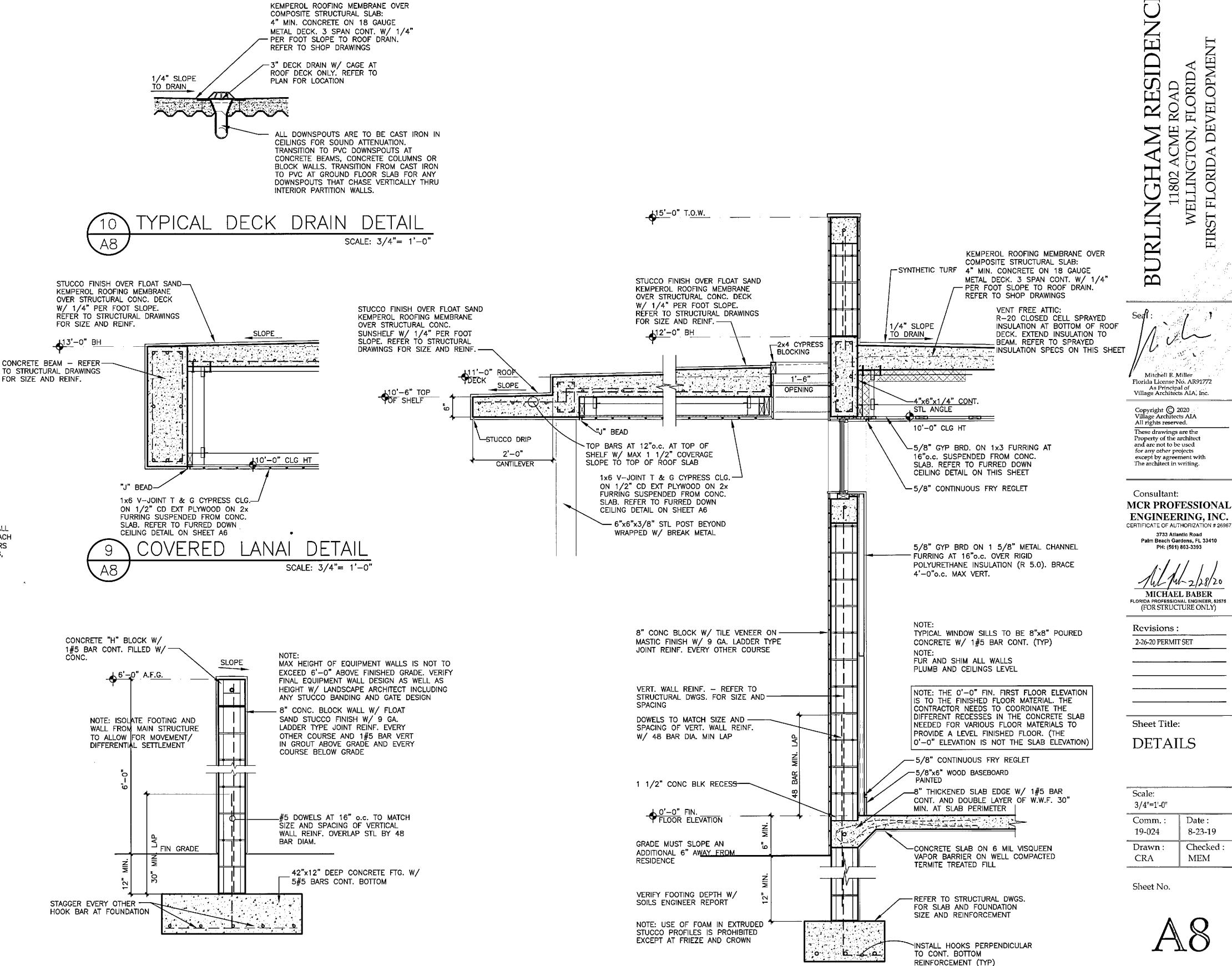
Date:

8-23-19

Checked:

MEM

DETAILS


2-26-20 PERMIT SET

and are not to be used

for any other projects

All rights reserved.

Florida License No. AR91772

SCALE: 3/4"= 1'-0"

OPENING

R=3'-5"

12" WIDE POURED CONC. WALL

EACH FACE

W/ #5 BARS EACH FACE, EACH WAY AT 12"o.c. W/ 2#5 BARS AT EACH ANGLE OF OPENING,

EQUIPMENT WALL

SCALE: 3/4"= 1'-0"

Sheet No.

	RC		HIN	SH S	CHED	DULE					
ROOM	FLOOR	BASE	C	ASING	CROWN	WALL		CEILING			REMARKS
			DOOR	WINDOW		MATL.	FIN	MATL	FIN	н	
FIRST FLOOR	•				•			***************************************		•	
CARPORT	SM CONC.	-	_	-	-	STUCCO	PAINT	STUCCO	PAINT	10'-6"	
FOYER	TILE	5/8"x6"	_	-	_	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
KITCHEN	TILE	5/8"x6"	-	-	-	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
PANTRY	TILE	5/8"x6"	-	-	_	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
LAUNDRY	TILE	5/8"x6"	_	_	_	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
DINING	TILE	5/8"x6"	-	-	_	GYP. BD.	PAINT	GYP, BD.	PAINT	10'-0"	
GREAT ROOM	TILE	5/8"x6"	-	_	-	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
COVERED LANA!	TILE	_	-	_	_	STUCCO	PAINT	WOOD	STAIN	10'-0"	
LOWER GALLERY	TILE	5/8"x6"	_	_		GYP. BD.	PAINT	GYP, BD.	PAINT	10'-0"	
MAIN STAIR	TILE	5/8"x6"	-	-	-	GYP, BD.	PAINT	GYP. BD.	PAINT	10'-0"	
GUEST BATH #2	TILE	5/8"x6"	-	_	-	GYP, BD.	PAINT	GYP. BD.	PAINT	10'-0"	
STORAGE	TILE	5/8"x6"	-	-	-	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
EXERCISE/DEN	TILE	5/8"x6"	-		-	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
DECK	TILE	-	-	-	_	STUCCO	PAINT	WOOD	STAIN	10'-0"	
GUEST BED #2	TILE	5/8"x6"	-	-	-	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
MASTER GUEST SUITE	TILE	5/8"x6"	-	-	_	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
W.I.C.	TILE	5/8"x6"	_	_	-	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
GUEST MASTER BATH	TILE	5/8"x6"	-	_	-	GYP. BD.	PAINT	GYP. BD.	PAINT	10'-0"	
SECOND FLOOR		,		, , ,	1	,			 	· 	
MAIN STAIR	TILE	5/8"x6"	_	_	-	GYP. BD.	PAINT	GYP. BD.	PAINT	8,-0,	
UPPER GALLERY	TILE	5/8"x6"	-			GYP. BD.	PAINT	GYP. BD.	PAINT	9'-0"	
OPEN ROOF TERRACE	SYNTHETIC TURF	-	_	_	_	STUCCO	PAINT			-	
OFFICE	TILE	5/8"x6"	-		-	GYP. BD.	PAINT	GYP. BD.	PAINT	9'-0"	
COVERED BALCONY	WOOD	•	-	_		STUCCO	PAINT	WOOD	STAIN	9,-0,	
MASTER SUITE	TILE	5/8"x6"	_	-	_	GYP. BD.	PAINT	GYP. BD.	PAINT	9'-0"	
HIS W.I.C.	TILE	5/8"x6"	_	_	_	GYP. BD.	PAINT	GYP. BD.	PAINT	9'-0"	
HER W.I.C.	TILE	5/8"x6"	-	_	_	GYP. BD.	PAINT	GYP. BD.	PAINT	9'-0"	
MASTHER BATH	TILE	5/8"x6"	-	-	_	GYP. BD.	PAINT	GYP. BD.	PAINT	9'-0"	

NOTE: VERIFY ALL FINISHES WI BIDDING OR START OF CONSTR	R DECORATOR PRIOR TO
TRIM ABOVE IS FOR BIDDING F FOR TRIM PROFILES. VERIFY TO WORK	

FINISH NOTES:

- VERIFY ALL FINISHES BEFORE PROCEEDING W/ WORK OR SUBMITTING BIDS USE "DUROCK" AT ALL WET AREAS TO RECEIVE TILE OR MARBLE. USE MOISTURE RESISTANT GYP BD. IN ALL OTHER BATHROOM VAPOR AREAS. ANYONE CAUGHT INSTALLING TILE OR MARBLE ON GYP BOARD AND NOT DUROCK IN A WET AREA WILL BE SHOT ON SIGHT.
- 2. ALL BATH SHOWERS TO HAVE SOAP RECESSES (V.L.O.J.)
- GYP BOARD FINISH SHALL BE SMOOTH AT WALLS AND CEILING EXCEPT WHERE NOTED OTHERWISE

	INTERIOR DOOR SCHEDULE											
NO.	SIZE TYPE		REMARKS									
	FIRST FLOOR											
8	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
9	2"-8" X 8'-0"	S.C. WOOD, POCKET	PANELED									
10	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
11	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
12	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
13	FIELD VERIFY	GLASS SHOWER DR. SWING	TEMPERED GLASS									
14	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
15	2'-8" X 8'-0"	S.C. WOOD, SWING	HIDDEN DOOR									
16	2'-8" X 8'-0"	S.C. WOOD, SWING	HIDDEN DOOR									
17	2'-8" X 8'-0"	S.C. WOOD, SWING	HIDDEN DOOR									
18	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
19	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
20	2"-6" X 8'-0"	S.C. WOOD, POCKET	PANELED									
21	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
22	FIELD VERIFY	GLASS SHOWER DR. SWING	TEMPERED GLASS									
23	OPEN											
24	OPEN											
	2nd FLOOR											
29	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
30	2'-8" X 8'-0"	S.C. WOOD, SWING	PANELED									
31	2'-6" X 8'-0"	S.C. WOOD, POCKET	PANELED									
32	2'-6" X 8'-0"	S.C. WOOD, POCKET	PANELED									
33	3'-0" X 8'-0"	S.C. WOOD, POCKET	PANELED									
34	FIELD VERIFY	GLASS SHOWER DR. SWING	TEMPERED GLASS									

INTERIOR	PROPER	MAY	NEED	m	RF	ADJUSTED	IM	HEIGHT	IN	ORDER	TΩ	MATCH
EXTERIOR								11230111		011041		W 11 O1
EXICKION	MINDO	n Avi		'TN F		nis						

	WINDOW SCH		WIND PRESSURES ARE BASED ON ASCE 7-10, 170 MPH, EXP C, RISK CATEGORY II, ASD DESIGN		DESIGN PRESSURE	PRODUCT DESIGN PRESSURE	
MARK 877E	TYPE	HEIGHT	EWARKS				
FIRST FLOOR							
A 72"x24"	FIXED	10'-0"		A	+34.39, -37.29		
B 36"x62"	CASEMENT	10'-0"		В	+33.82, -44.44		
C 36"x96"	SINGLE HUNG	10'-0"		С	+32.85, -35.75		
D 96"x24"	FIXED	10'-0"		D	+33.75, -36.65		i i
E 36"x96"	SINGLE HUNG	10"-0"		E	+32.85, -35.75		
F 36"x84"	SINGLE HUNG	10'-0"		F	+33.15, -36.05		VILLAGE
G 36"x84"	SINGLE HUNG	10'-0"		G	+33.15, -36.05		AILLAGI
H 36"x120"	FIXED	10'0"		н	+32.12, -41.04		ARCHITECTS AI.
2nd FLOOR	•						
J 68"x24"	FIXED	21'-0"		J	+34.52, -37.42		400 N CYPRESS DRIVE, SUITE 2
K 36"x96"	SINGLE HUNG	21'-0"		K	+32.85, -35.75		Tequesta, FL 33469
L 96"x24"	FIXED	21'-0"		L	+33.75, -36.65		Phone: 561-743-4959
M 36"x96"	SINGLE HUNG	21'-0"		М	+32.85, -35.75		Fax: 561-743-1225
N 36"x72"	SINGLE HUNG	21'-0"		N	+33.49, -36.39		www.Village-Architects.com
P 36"x72"	SINGLE HUNG	21'-0"		P	+33.49, -36.39		AA26001195
							77 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
WINDOW HEAD HEIGHTS MA	AY NEED TO BE ADJUSTED IN ORDE	ER TO MATCH EX	RIOR DOOR HEIGHTS				Γ _Τ 1

E		EXTERIOR DOOR SCHEDULE WIND PRESSURES ARE BASED ON ASCE 7-10, 170 MPH, EXP C, RISK CATEGORY II, ASD DESIGN						
ID MARK	PRODUCT	DESCRIPTION	REMARKS	PRESSURE CODE (from chart below)				
	FIRST FLOOR							
1	3'-0" x 10'-0"	CLAD "FRENCH", SWING	W/ 24" SIDE LITE	+32.12, -41.04	<u> </u>			
2	3'-0" x 10'-0"	CLAD "FRENCH", SWING	2	+32.12, -35.02				
3	(4) 4'-5" x 10'-0"	STACKING SL. GL. DOORS	STACK TO BOTH SIDES (17'-8 1/2" OVERALL OPENING)	+28.41, -31.31				
4	(2) 4'-6 1/2"x10'-0"	STACKING SL. GL. DOORS	STACK TO ONE SIDE (9'-1" OVERALL OPENING)	+29.91, -36.62				
5	(2) 4'-6 1/2"x10'-0"	STACKING SL. GL. DOORS	STACK TO ONE SIDE (9'-1" OVERALL OPENING) 5	+29.91, -32.81				
6	(2) 4'-6 1/2"x10'-0"	STACKING SL. GL. DOORS	STACK TO ONE SIDE (9'-1" OVERALL OPENING) 6	+29.91, -32.81				
7	(6) 4'-4 1/2"x10'-0"	STACKING SL. GL. DOORS	STACK TO BOTH SIDES (26'-2 1/2" OVERALL OPENING) 7	+27.55, -30.45				
	SECOND FLOOR							
25	(4) 4'-6 1/2"x 9'-0"	STACKING SL. GL. DOORS	STACK TO BOTH SIDES (18'-2" OVERALL OPENING) 25	+28.60, -34.01				
26	(2) 4'-6 1/2"x 9'-0"	STACKING SL. GL. DOORS	STACK TO ONE SIDE (9'-1" OVERALL OPENING) 26	+30.15, -37.09				
27	(2) 4'-0" x 9'-0"	STACKING SL. GL. DOORS	STACK TO ONE SIDE (8'-0" OVERALL OPENING) 27	+30.41, -37.62				
28	(2) 4'-0" x 9'-0"	STACKING SL. GL. DOORS	STACK TO ONE SIDE (8'-0" OVERALL OPENING) 28	+30.41, -33.31				

WINDOW AND DOOR NOTES:

SINGLE HUNG WINDOWS AND FIXED GLASS BY "WINDOOR" OR "S.I.W." OR "LA FINESTRA" (VERIFY MFGR) W/ IMPACT TINTED GLASS, TYPICAL MUNTINS 7/8" ON BOTH SIDES, NON-REMOVABLE I/S, W/ ROLL DOWN INTEGRATED SCREENS, UNLESS OPENING UNTO A SCREENED ENCLOSURE. (COLOR TO BE VERIFIED)

TYPICAL EXTERIOR FRENCH DOORS BY "WINDOOR" OR "S.I.W." OR "LA FINESTRA" (VERIFY MFGR) W/ IMPACT TINTED GLASS. TYPICAL MUNTINS 1" ON BOTH SIDES. VERIFY IF SCREENS ARE AT DOORS. (COLOR TO BE

SLIDING GLASS DOORS BY "WINDOOR" OR S.I.W. OR LA FINESTRA (VERIFY MANUF)

(EGRESS) INDICATES WINDOWS THAT ARE TO BE IN COMPLIANCE WITH NATIONAL EGRESS CODES

INTERIOR DOORS TO BE 1 3/4" THICK

CONTRACTOR AND WINDOW/DOOR MFGR. SHALL FIELD VERIFY ALL WINDOW AND EXTERIOR DOOR OPENINGS PRIOR TO ORDERING, VERIFY FINAL LOCATIONS W/ INTERIOR DESIGNER/ARCHITECT. YES... FIELD VERIFY SIZES PRIOR TO ORDERING!!!

ALL EXTERIOR DOOR AND WINDOW HEAD HEIGHTS TO LINE UP. NOTE: FRONT DOOR AND EXTERIOR FRENCH SWING DOORS SHALL HAVE A RECESSED PRECAST THRESHOLD. REFER TO PRECAST THRESHOLD DETAIL ON SHEET A1. SET THE EXTERIOR DOOR HEAD HEIGHT ALLOWING FOR THE RECESSED PRECAST THRESHOLD. ALIGN THE HEAD HEIGHTS OF THE WINDOWS, THE INTERIOR DOORS AND ALL REMAINING EXTERIOR DOORS TO THIS ESTABLISHED EXTERIOR DOOR HEAD HEIGHT. WINDOW AND EXTERIOR DOOR SIZES AND LOCATIONS

NEED TO BE VERIFIED IN FIELD PRIOR TO ORDERING

AMMONIACAL COPPER ZINC ARSENATE (ACZA) TREATED WOOD IS PROHIBITED DUE TO ITS HIGH CORROSIVENESS TO ALL METAL FASTENERS AND CONNECTORS.

WINDOW AND DOOR NOTES CONT'D:

FASTENERS AT PRESSURE TREATED WOOD SHALL BE STAINLESS STEEL (304 OR 416) OR HOT DIPPED GALVANIZED (G185 COATING MIN.) CONNECTORS AND FASTENERS SHOULD BE OF THE SAME MATERIAL

ALUMINUM WINDOWS AND ALUMINUM CLAD WINDOWS MUST BE INSTALLED WITH A PROTECTIVE LAYER OF 15# FELT BETWEEN THE P.T. BUCK AND THE WINDOW TO PREVENT CORROSION.

ALL EXTERIOR DOORS AND WINDOWS SHALL BE INSTALLED W/ COPPER PANS AT BASE OF UNITS AND THE PERIMETER PROPERLY SEALED TO PREVENT LEAKING. AS AN ALTERNATE TO INSTALLING COPPER

PANS, VOLKEM SEALANT MAY BE SUBSTITUTED AT ENTIRE PERIMETER. VOLKEM SEALANT MUST BE APPLIED IN A FOUR STEP PROCESS, FIRST THE VOLKEM 921 IS APPLIED IN A BED WHERE THE BUCKS ARE TO BE INSTALLED, INSTALL BUCK, ALLOW VOLKEM TO DRY. SECOND STEP IS TO COAT THE THE BUCK AND WALL AREA BEHIND THE FLANGE W/ VOLKEM 921, INSTALL OPENING UNIT AND ALLOW TO VOLKEM TO DRY. A OVERLAPPING THIRD COAT OF VOLKEM 921 IS THEN APPLIED UP TO THE PERIMETER FLANGE OF THE DOOR SURROUNDING MASONRY, ALLOW VOLKEM TO DRY. USE VOLKEM 350 (PAINTABLE) AS THE FOURTH COAT. ALSO APPLY UP TO OPENING UNIT FLANGE AND COAT ANY EXPOSED VOLKEM 921 AND TAPER FURTHER ONTO

VERIFY ALL FINISHES BEFORE PROCEEDING W/ WORK OR SUBMITTING BIDS

BUCKING NOTES:

1. WINDOW AND DOOR ATTACHMENT TO CONCRETE ATTACH 2 X PRESSURE TREATED BUCK TO CONCRETE OR GROUT FILLED MASONRY WITH 1/4"DIA x 3 1/4" TAPCONS 3" IN FROM EACH

NOTE:

EGRESS WINDOW REQUIREMENTS

FLORIDA BUILDING CODE RESIDENTIAL, 2014 EDITION SECTION R310, PARAGRAPH R310.1, EMERGENCY ESCAPE

MINIMUM NET CLEAR OPENING: SECOND FLOOR 5.7 SQ. FT.
MINIMUM NET CLEAR OPENING: FIRST FLOOR 5.0 SQ. FT
MINIMUM NET CLEAR OPENING HEIGHT: 24 INCHES

MINIMUM NET CLEAR OPENING WIDTH: 20 INCHES
MAXIMUM SILL HEIGHT FROM FLOOR: 44 INCHES

CORNER AND AT 12"o.c. BUCK ATTACHMENTS FOR WIND LOAD ONLY. SLIDING GLASS DOOR ATTACHMENT
ATTACH 1 X 6 PRESSURE TREATED BUCK TO CONCRETE WITH
T-NAILS OR HILTI PINS. ATTACH SLIDING GLASS DOOR FRAME TO
CONCRETE THRU BUCK WITH 1/4" DIA. TAPCONS 6" IN FROM EACH CORNER AND AT 12"o.c. WITH 1 1/4" MIN. PENETRATION.

WINDOW AND DOOR TO WOOD ATTACH 2"x 4" BUCK TO WOOD STUD WITH 8d NAILS. ATTACH DOOR/WINDOW FRAME TO WOOD STUDS THRU BUCK WITH #12 SCREWS 3" LONG (MINIMUM), 4" IN FROM EACH CORNER AND 8"o.c.

GARAGE DOOR ATTACHMENT
ATTACH 2x6 PRESSURE TREATED BUCK TO CONCRETE OR GROUT
FILLED MASONRY WITH 5/8" DIA "J" BOLTS 6" FROM EACH END AND
24"o.c. AT JAMB WITH 3" DIA x 1/4" WASHER. (OPTIONAL: USE 5/8"
DIA EPOXY SET BOLTS W/ 4" MIN EMBEDMENT) AND USE 1/4"
DIAMETER X4 1 (2" TRECONS (2 1 (2" MIN EMBEDMENT) ACCURATE. DIAMETER x4 1/2" TAPCONS (2 1/2" MIN EMBEDMENT) 6" FROM EACH END AND 24"o.c. AT HEADER. TRACK ATTACHMENT BY DOOR

DOUBLE BUCKING AT OPENINGS IS NOT ACCEPTABLE. VERIFY MASONRY OPENING REQUIREMENTS W/ WINDOW/DOOR MANUF AND MAKE ADJUSTMENTS TO THE MASONRY OPENING AS REQUIRED. VERIFY CHANGES TO WINDOW/ DOOR SIZES OR MASONRY OPENING SIZE PRIOR TO CONSTRUCTION OR ORDERING WINDOWS/DOORS. GLUE ALL BUCKS TO CONCRETE PRIOR TO ATTACHMENT

FOR IMPACT GLAZING WINDOWS AND DOORS, USE BUCK ATTACHMENT AS DEFINED IN CERTIFICATION DOCUMENTATION, NOTIFY ARCHITECT IF IT VARIES FROM PLANS. REFER TO MFGRS. SPECIFICATIONS FOR DOOR AND WINDOW ATTACHMENT TO BUCK.

400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469 Phone: 561-743-4959 Fax: 561-743-1225 www.Village-Architects.com AA26001195 Щ INGHAM RESIDENC 11802 ACME ROAD WELLINGTON, FLORIDA

THE DOOR AND WINDOW PRODUCT INFORMATION ON THIS PLAN IS BASED ON INFORMATION PROVIDED BY THE BURL DOOR/WINDOW MANUF. AND THE CONTRACTOR. THIS SHEET IS INTENDED TO BE A LINK BETWEEN THE DESIGN CRITERIA AND THE MANUF DATA. THE ARCHITECT ASSUMES NO RESPONSIBILITY AS TO THE ACCURACY OF THIS DATA

Seal: Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc.

Village Architects AIA All rights reserved. These drawings are the Property of the architect and are not to be used for any other projects except by agreement with

The architect in writing.

Consultant: MCR PROFESSIONAL ENGINEERING, INC. CERTIFICATE OF AUTHORIZATION # 26967

> 3733 Atlantic Road Palm Beach Gardens, FL 33410 PH: (561) 863-3393

MICHAEL BABER (FOR PRESSURES ONLY)

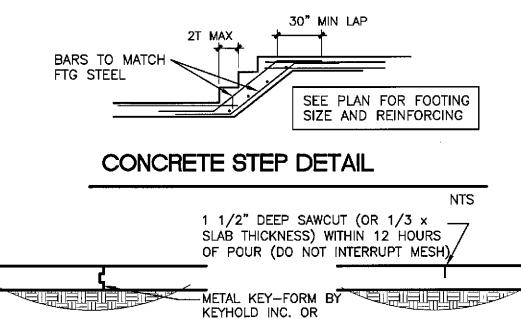
Revisions: 2-26-20 PERMIT SET

Sheet Title:

DOOR AND WINDOW **SCHEDULES**

Scale: NONE

Date: Comm.: 19-024 Drawn: CRA


Sheet No.

MAR 0 4 2020

8-23-19

Checked:

MEM

EQUAL (STOP MESH)

3/4" = 1'-0"

TYPICAL SLAB TRANSITION DETAIL

NOTE: CONTROL JOINTS/CONSTRUCTION JOINTS SHALL

CONSTRUCTION JOINT

CREATE PANELS OF 400 S.F. MAX

FOUNDATION NOTES:

- 1. CONTRACTOR TO VERIFY SOIL CAPACITY PER GEOTECHNICAL ENGINEERS SPECS. FOUNDATIONS DESIGNED FOR AN ALLOWABLE SAFE BEARING CAPACITY OF 2500 PSF. U.N.O.
- 2. SIZE VARIES POURED CONC COL W/ VERTICAL BARS AS NOTED AND # 3 TIES AS NOTED
- 3. S CONCRETE BLOCK W/ 1#5 BAR VERTICAL IN GROUT FILLED CELL AT EACH CORNER, EACH SIDE OF OPENINGS, AT 4'-0" MAX o.c. OR AS INDICATED ON PLAN

4. (2) # 5 5'-6" IN LENGTH IN CENTER OF 4"

REQUIREMENTS FOR STRUCTURAL CONCRETE

CONCRETE SLAB AT ALL INTERIOR CORNERS. TYPICAL 5. T-46 CONC INSPECTION BLOCK W/ INSERTS AT BASE OF GROUT FILLED COL. OPTIONAL, T-46 BLOCK DESIGNED FOR CLEAN INSPECTIONS OF FILLED CELLS ELIMINATING HAMMERING, CHIPPING OR SAWING. 6. CONCRETE COLUMN TIE REINFORCEMENT SHALL COMPLY

WITH SECTION 7.10.5 OF ACI 318 "BUILDING CODE

7. FIRST FLOOR LOAD BEARING WOOD STUD WALLS SHALL CONSIST OF 2x4 OR 2x6 STUDS SPACED AT 16" o.c. CONTROL JOINT

W/ DOUBLE TOP PLATE AND SINGLE PRESSURE TREATED BOTTOM PLATE. PROVIDE 5/8" DIA WEDGE ANCHORS (W/ WASHERS) AT 32" o.c. (MAX) AT BOTTOM PLATE(x5 1/2" MIN EMBED) PROVIDE "SIMPSON" SP4 OR SP6 STUD PLATE TIES AT TOP AND BOTTOM OF EACH WALL STUD CONTRACTOR SHALL VERIFY ALL SLAB RECESSES REQUIRED FOR VARIOUS FLOOR FINISHES

CONTRACTOR SHALL COORDINATE ALL MASONRY OPENINGS PRIOR TO CONSTRUCTION

NOTE: CONTRACTOR SHALL VERIFY EQUIPMENT, EQUIPMENT SIZE AND CLEARANCES REQUIRED PRIOR TO CONSTRUCTING EQUIPMENT WALL ENCLOSURES

SLAB NOTE: F1=24" WIDE x12" DEEP CONC. STEMWALL FTG. W/ 4" 4000 PSI CONCRETE SLAB W/ TOPICAL CURING COMPOUND W/ W1.4xW1.4 WWF ON 6 MILL POLY VAPOR 3#5 BARS CONT. AND #5 TRANSVERSE AT 12" o.c. BARRIER ON WELL COMPACTED TERMITE TREATED F2=30" WIDE x12" DEEP CONC. STEMWALL FTG. W/ GRANULAR FILL. 8" THICKENED SLAB EDGE W/ DOUBLE LAYER OF 6x6-W1.4xW1.4 WWF AROUND PERIMETER. 4#5 BARS CONT. AND #5 TRANSVERSE AT 12"o.c. EXTEND WWF 30" MIN. INTO SLAB.

F3=66"x66"x24" DEEP CONC. PAD FTG W/ 7#5 BARS EACH WAY TOP AND BOTTOM F4=36"x36"x12" DEEP CONC. PAD FTG W/ 3#5 BATS BOTTOM EACH WAY

F5=42"x42"x12" DEEP CONC. PAD FTG W/ 5#5 BARS BOTTOM EACH WAY

F6= OPEN

F7= 12" THICKENED SLAB EDGE W/ 1#5 BAR CONT. F8= 8" THICKENED SLAB EDGE W/ 1#5 BAR CONT.

THE CONTRACTOR NEEDS TO COORDINATE THE DIFFERENT RECESSES IN THE CONCRETE SLAB NEEDED FOR VARIOUS FLOOR MATERIALS TO PROVIDE A LEVEL FINISHED FLOOR.

400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469 Phone: 561-743-4959

Fax: 561-743-1225

www.Village-Architects.com AA26001195

RESIDEN

RLIN

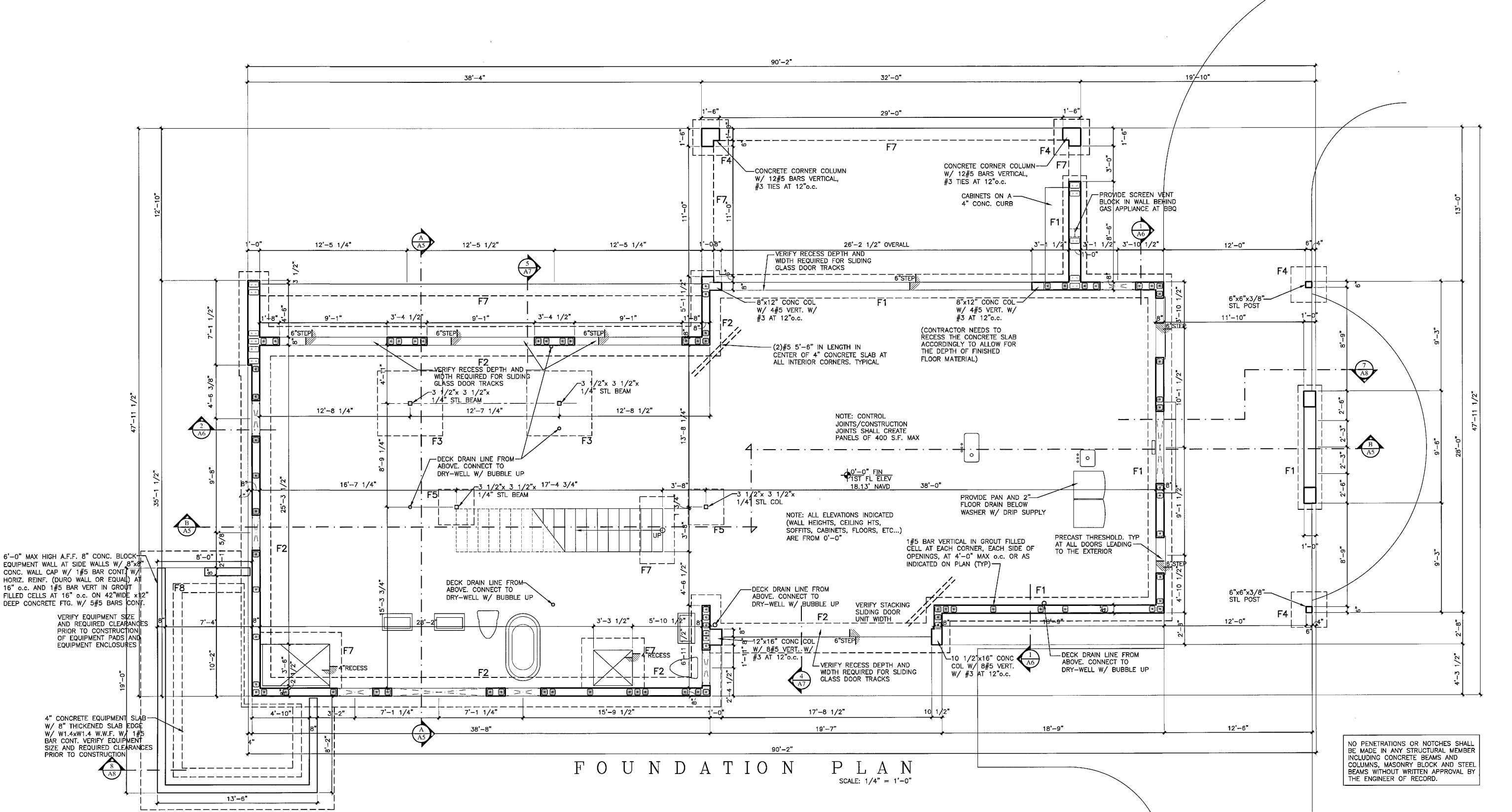
 $\mathbf{\Omega}$

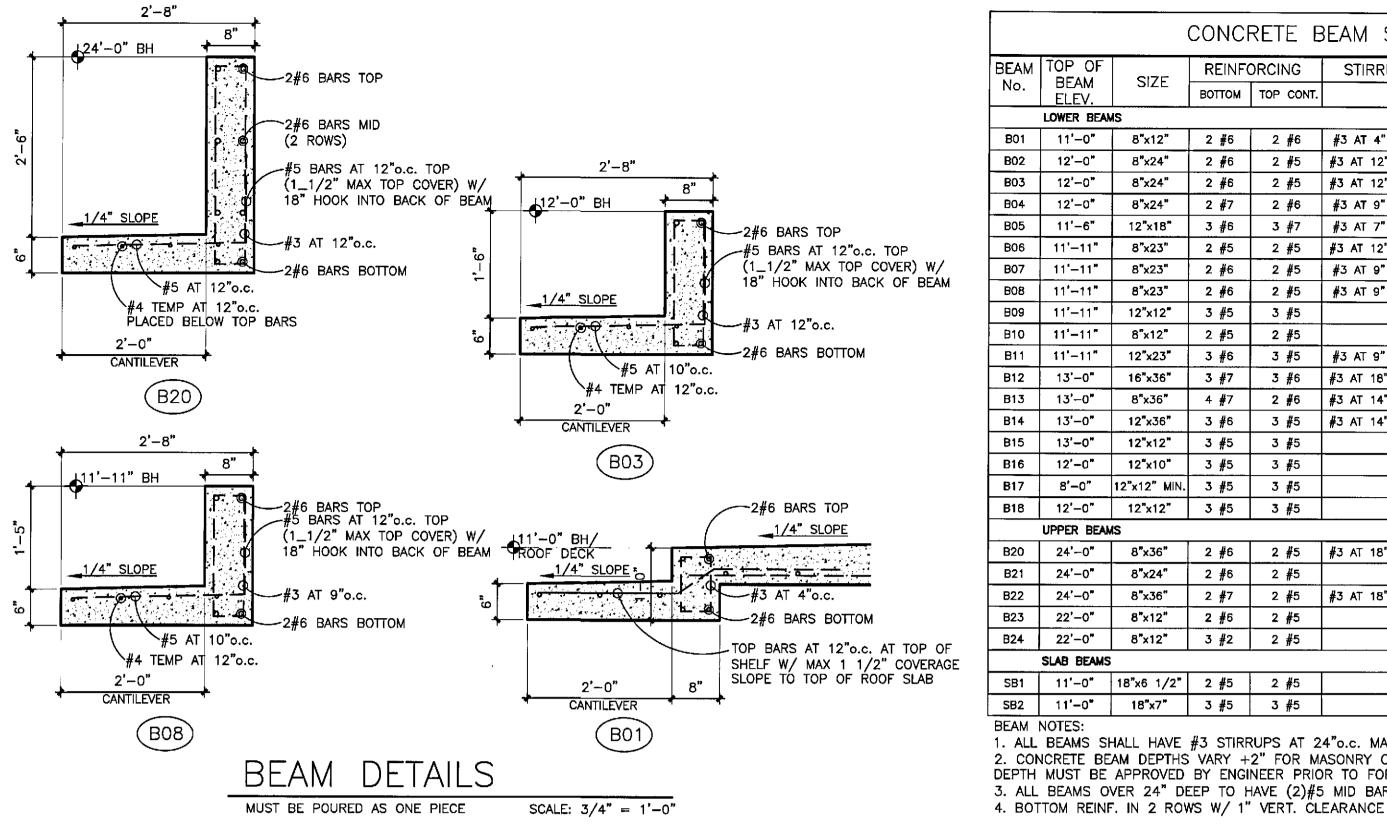
Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc.

Copyright © 2020 Village Architects AIA All rights reserved. These drawings are the Property of the architect and are not to be used for any other projects except by agreement with The architect in writing.

Consultant: MCR PROFESSIONAL ENGINEERING, INC. CERTIFICATE OF AUTHORIZATION # 26963 3733 Atlantic Road
Palm Beach Gardens, FL 83410

MICHAEL BABER FLORIDA PROFESSIONAL ENGINEER, 52575


Revisions: 2-26-20 PERMIT SET


Sheet Title:

FOUNDATION PLAN

Scale: 1/4"=1'-0" Comm.: Date: 8-23-19 19-024 Checked: Drawn: CRA MEM

Sheet No.

7 712'-0" BH

8'-0 1/2"

OVERFLOW-

SCUPPER

BEAM HEIGHT LEGEND

444444

[7]7]3

11'-0" BH

11'-6" BH

11'-11" BH

22'-0" BH

24'-0" BH

#4x3'-6" AT 12" #4x8'-0" AT 0.c. TOP 12"0.c. TOP

COMPOSITE SLAB: 4" CONC. SLAB

W/6X6W1.4XW1.4| WWF OVER 2" 18 GAUGE STEEL DECK WELDED TO

STEEL W/ 5/8" DIA. PUDDLE WELDS 36/7 PATTERN (TYP.)

3" DIA.

DOWNSPOUT-

FROM ABOVE

B07)12"o.c.B0T

-3 1/2"x 3 1/2"x

DOWNSPOUT

_3 1/2"x 3 1/2"x 1/4" STL BEAM

FROM ABOVE

1/4" STL BEAM

	TOD OF					FDULE (fc=4,000 PSI, U.N.O.)
BEAM No.	TOP OF BEAM	SIZE	REINFO	DRCING	STIRRUPS	REMARKS
110.	ELEV.		воттом	TOP CONT.		11210
	LOWER BEAT	MS				
B 01	11'-0"	8"x12"	2 #6	2 #6	#3 AT 4" o.c.	SEE DETAIL
B02	12'-0"	8"x24"	2 #6	2 #5	#3 AT 12" o.c.	2#5 BARS MID
B03	12'-0"	8"x24"	2 #6	2 #5	#3 AT 12" o.c.	2#5 BARS MID, SEE DETAIL
B04	12'-0"	8"x24"	2 #7	2 #6	#3 AT 9" o.c.	2#5 BARS MID
B05	11'-6"	12"x18"	3 #6	3 #7	#3 AT 7" o.c.	2#5 BARS MID
B06	11'-11"	8"x23"	2 # 5	2 #5	#3 AT 12" o.c.	2#5 BARS MID
B07	11'-11"	8"x23"	2 #6	2 #5	#3 AT 9" o.c.	2#5 BARS MID
B08	11'-11"	8"x23"	2 #6	2 #5	#3 AT 9" o.c.	2#5 BARS MID, SEE DETAIL
B09	11'-11"	12"x12"	3 # 5	3 #5	"	
B10	11'-11"	8"x12"	2 #5	2 #5		
B11	11'-11"	12"x23"	3 # 6	3 #5	#3 AT 9" o.c.	2#5 BARS MID
B12	13'-0"	16"x36"	3 #7	3 #6	#3 AT 18" o.c.	2 ROWS 2#5 BARS MID
B13	13'-0"	8"x36"	4 #7	2 #6	#3 AT 14" o.c.	2 ROWS 2#5 BARS MID, 4 AT BOTTOM
B14	13'-0"	12"x36"	3 #6	3 #5	#3 AT 14" o.c.	2 ROWS 2#5 BARS MID
B15	13'-0"	12"x12"	3 # 5	3 # 5		
B16	12'-0"	12"x10"	3 # 5	3 #5		W/ STEEL BEAM BELOW
B17	8'-0"	12"x12" MIN.	3 #5	3 #5	••	ADD 2#5 BARS BOTTOM AT ANGLE
B18	12'-0"	12"x12"	3 #5	3 #5		
	UPPER BEAM	AS				
B20	24'-0"	8"x36"	2 #6	2 #5	#3 AT 18" o.c.	2#5 BARS MID, SEE DETAIL
B21	24'-0"	8"x24"	2 #6	2 #5		2#5 BARS MID
B22	24'-0"	8"x36"	2 #7	2 #5	#3 AT 18" o.c.	2 ROWS 2#6 BARS MID
B23	22'-0"	8"x12"	2 #6	2 #5		
B24	22'-0"	8"x12"	3 #2	2 #5		
	SLAB BEAMS					
SB1	11'-0"	18"x6 1/2"	2 #5	2 #5		
SB2	11'-0"	18"x7"	3 #5	3 #5		

2. CONCRETE BEAM DEPTHS VARY +2" FOR MASONRY OPENING REQUIREMENTS. REDUCTION IN BEAM DEPTH MUST BE APPROVED BY ENGINEER PRIOR TO FORMING BEAM.

3. ALL BEAMS OVER 24" DEEP TO HAVE (2)#5 MID BARS PER 12" OF DEPTH

----#4×8'−0" AT

SLAB. TOP OF SLAB

11'-6" +/-

4"x6"x1/4" STL ANGLE

△ 1/2"x 3 1/2"x

W16x26 STEEL BEAM

W16x26 STEEL BEAM

DOWNSPOUT

1/4" STL BEAM

DESIGN CRITERIA: DESIGN CODE: FLORIDA BUILDING CODE 6TH EDITION (2017) ASCE 7-10

SUPERIMPOSED LOADS: CONC ROOF DECK: 2nd FLOOR CONC. SLAB: DEAD LOAD = 65 psf DEAD LOAD = 125 psf DEAD LOAD = 65 psf
LIVE LOAD = 40 psf LIVE LOAD = 40 psf
TOTAL = 105 psf TOTAL = 165 psf TOTAL = 105 psf = 105 psf TOTAL

WIND: WIND SPEED = 170 mph EXPOSURE "C" RISK CATEGORY !! INTERNAL PRESSURE COEFFICIENT = 0.18 WIND IMPORTANCE FACTOR = 1.0

MEAN ROOF HEIGHT = $29'-6 \frac{1}{2}$ " FOUNDATIONS: FOUNDATIONS DESIGNED FOR AN ALLOWABLE SAFE BEARING CAPACITY OF

CONCRETE: 4,000 psi WITH WATER/CEMENT RATIO=.040 FOR FOOTINGS AND SLABS ON 4,000 psi FOR ALL STRUCTURAL CONCRETE (U.N.O.) WITH WATER /CEMENT RATIO = 0.4 (BROOM FINISH AT ALL CONCRETE BALCONIES)

NO WATER TO BE ADDED ON SITE. WATER REDUCERS MAY BE USED IN MIX DESIGN SUBMIT CONCRETE MIX DESIGNS TO ARCHITECT/ ENGINEER FOR APPROVAL REINFORCING STEEL: CONFORMS TO ASTM A615, GRADE 60 DEFORMED BARS. WELDED WIRE MESH: CONFORMS TO ASTM A-185.

MASONRY WALLS: MASONRY UNITS: ASTM C-90 (f'm= 1,500 psi) MORTAR: ASTM C-270, TYPE "M" OR "S" GROUT: ASTM C-476 (PEA GRAVEL CONCRETE IS PROHIBITED) STRUCTURAL STEEL: STRUCTURAL STEEL TUBING SHALL CONFORM TO ASTM A-500, Fy = 46 ksi. STRUCTURAL STEEL PLATES SHALL CONFORM TO ASTM A-36. ALL SHOP CONNECTIONS SHALL BE WELDED UTILIZING E70XX ELECTRODES.

WOOD: STRUCTURAL WOOD COMPONENTS SHALL HAVE THE FOLLOWING MINIMUM ALLOWABLE FIBER STRESSES:

BENDING: 1,200 ps SHEAR:

13'-0" SLAB

6 1/2" TO 6" THICK

CONCRETE SLAB. TOP

OF SLAB 13'-0" +/-

COMPOSITE SLAB: 4" MIN. CONC. SLAB
W/6X6W1.4XW1.4 WWF OVER 2" 18
GAUGE STEEL DECK WELDED TO STEEL

W/ 5/8" DIA. PUDDLE WELDS 36/7

· PATTERN (TYP.)

#4x4'-6" AT 12"-o.c. TOP (TYP.

ELEV SLAB

DRAIN

3" DIA. DECK-

WOOD IN CONTACT WITH MASONRY OR CONCRETE SHALL BE PROTECTED OR PRESSURE TREATED IN ACCORDANCE WITH AITC-109.

MANUFACTURED WOOD: MEMBERS DESIGNATED 'LVL' (e.g., 1-3/4" x 11-7/8" LVL) SHALL BE LAMINATED VENEER LUMBER AS MANUFACTURED BY TRUSSJOIST MacMILLAN (MICROLLAM), OR ENGINEER APPROVED SUBSTITUTION. Fb= 3100 psi, E= 2,000,000 psi, Fv= 285 psi.

1/4" PER FOOT SLOPE TO DRAIN

SLOPE TO_ DRAIN

3" DIA. DECK-

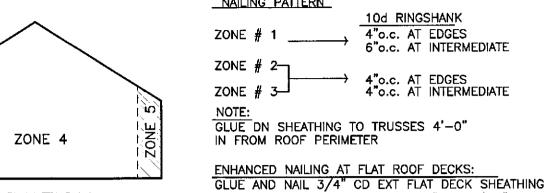
DRAIN

13'-0" BH

12'-0" BH B03

OVERFLOW-

SCUPPER


GABLE END — ZONE # 3 — ZONE # 2 — ZONE # 3 NAILING PATTERN

10d RINGSHANK

WITH 10d RING SHANK NAILS AT 4"o.c. W/30# BASE

4"o.c. AT EDGES

6"o.c. AT INTERMEDIATE

SHEET TO BE TIN TAGGED AT 4"o.c. PLYWOOD SHEATHING NAILING SCHEDULE (3/4" CD EXTERIOR PLYWOOD)

ELEVATION

10'-6" SLAB

留) #4x4'-6" AT 12"

o.c. TOP (TYP. ALL AROUND)

Воттом∕

ELEV SLAB

SLOPE_

(SB2)

6 1/2" TO 6" THICK

CONCRETE SLAB. TOP

OF SLAB 11'-0" +/-

			COMPONENTS	AND CLADDIN
ZONE	NAIL SIZE	NAIL SPACING	+PSF	-PSF
ZONE 1	10d RING SHANK	4"o.c. AT EDGES, 6"o.c. INTERMEDIATE	15.47	38.02
ZONE 2	10d RING SHANK	4"o.c. AT EDGES, 4"o.c. INTERMEDIATE	15.47	63.79
ZONE 3	10d RING SHANK	4"o.c. AT EDGES, 4"o.c. INTERMEDIATE	15.47	96.01
ZONE 4	10d RING SHANK	6"o.c. AT EDGES, 12"o.c. INTERMEDIATE	34.80	37.70
ZONE 5	10d RING SHANK	4"o.c. AT EDGES, 8"o.c. INTERMEDIATE	34.80	46.40

1) GLUE DOWN SHEATHING TO TRUSSES 4'-0" IN FROM ROOF PERIMETER. 2) GLUE AND NAIL 3/4" CD EXTERIOR FLAT DECK SHEATHING WITH 10d RING SHANK NAILS AS NOTED ABOVE WITH 30# BASE SHEET TIN TAGGED TO PLYWOOD SHEATHING.

NOTE: ROOF SLAB, BEAM AND ROOF

-TOP BARS AT 12"o.c. AT TOP

OF SHELF W/ MAX 1 1/2" COVERAGE SLOPE TO TOP OF

NO PENETRATIONS OR NOTCHES SHALL BE MADE IN ANY STRUCTURAL MEMBER

COLUMNS, MASONRY BLOCK AND STEEL BEAMS WITHOUT WRITTEN APPROVAL BY THE ENGINEER OF RECORD.

INCLUDING CONCRETE BEAMS AND

SHELF MUST BE POURED AT THE SAME TIME TO AVOID COLD JOINT

VILLAGE ARCHITECTS AIA 400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469 Phone: 561-743-4959

Fax: 561-743-1225 www.Village-Architects.com AA26001195 H

SIDE RL

Seal:

Mitchell E. Miller Florida License No. AR91772

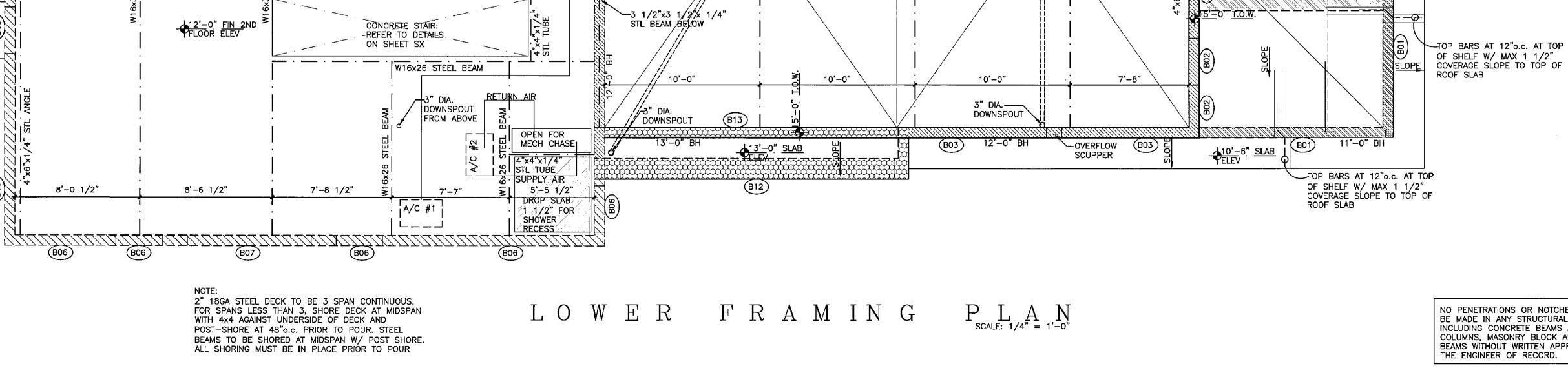
Copyright © 2020 Village Architects AIA All rights reserved. These drawings are the Property of the architect and are not to be used for any other projects except by agreement with

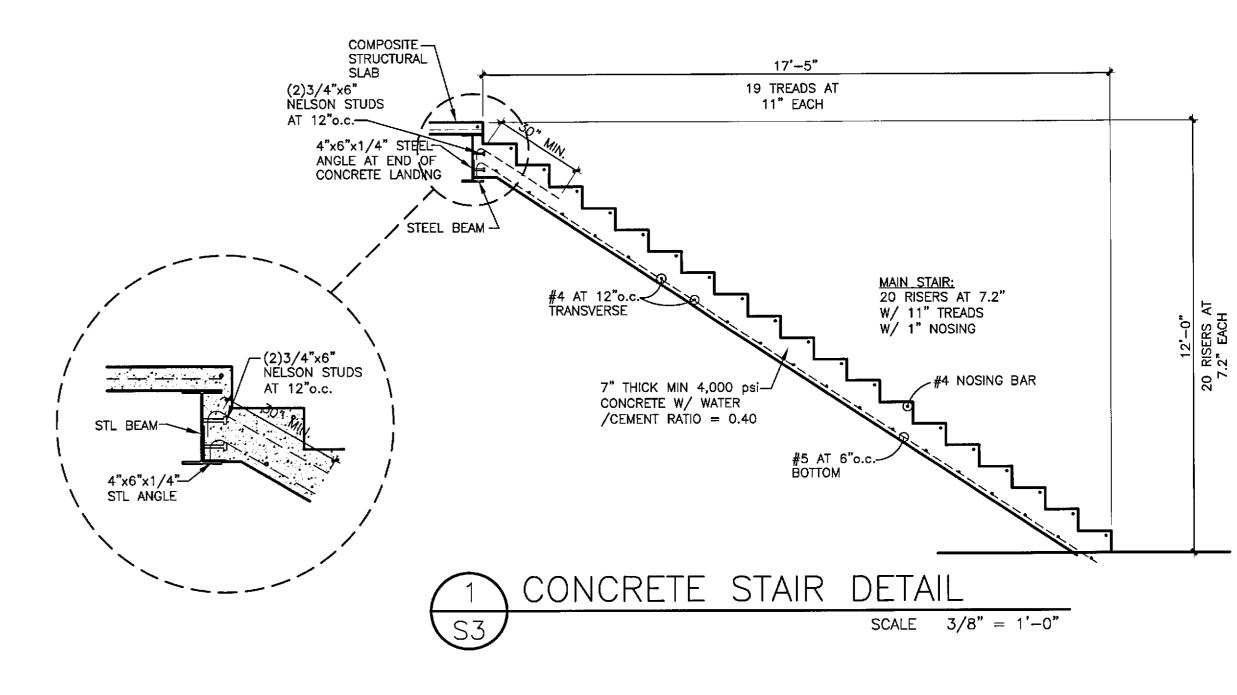
The architect in writing.

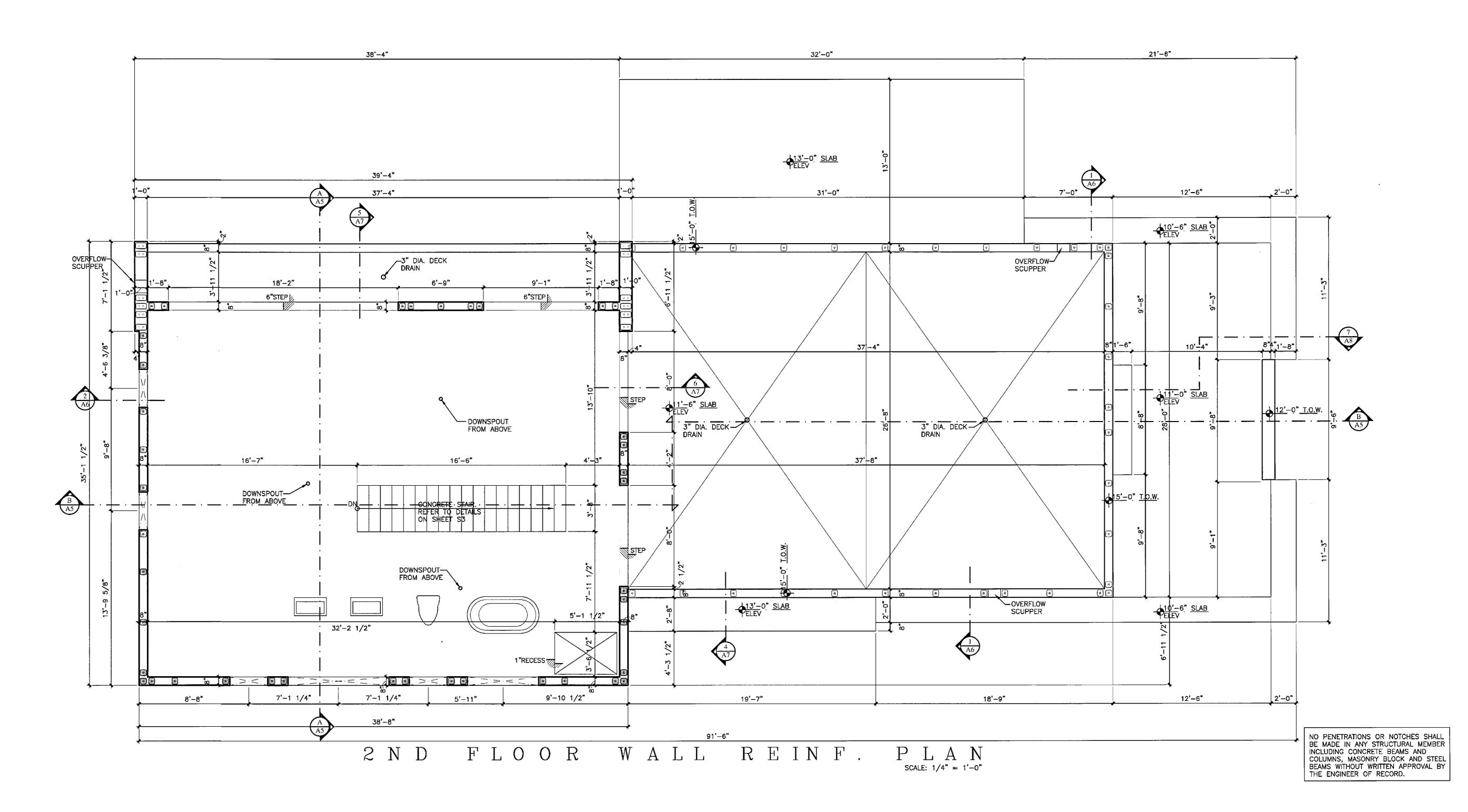
Consultant: MCR PROFESSIONAL ENGINEERING, INC. CERTIFICATE OF AUTHORIZATION # 2696

PH: (561) 863-3393

MICHAEL BABER LORIDA PROFESSIONAL ENGINEER, 5257


Revisions: 2-26-20 PERMIT SET


Sheet Title:


LOWER FRAMING **PLAN** Scale:

1/4"=1'-0" Comm.: Date: 19-024 8-23-19 Checked: Drawn : CRA MEM

Sheet No.

400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469

Phone: 561-743-4959 Fax: 561-743-1225 www.Village-Architects.com AA26001195

RESIDENCE BURLINGH

Seal:

Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc.

Copyright © 2020 Village Architects AIA All rights reserved. These drawings are the Property of the architect and are not to be used for any other projects except by agreement with The architect in writing.

Consultant: MCR PROFESSIONAL ENGINEERING, INC. CERTIFICATE OF AUTHORIZATION # 26967

3733 Atlantic Road Palm Beach Gardens, FL 33410 PH: (561) 863-3393 MICHAEL BABER
FLORIDA PROFESSIONAL ENGINEER, 52575

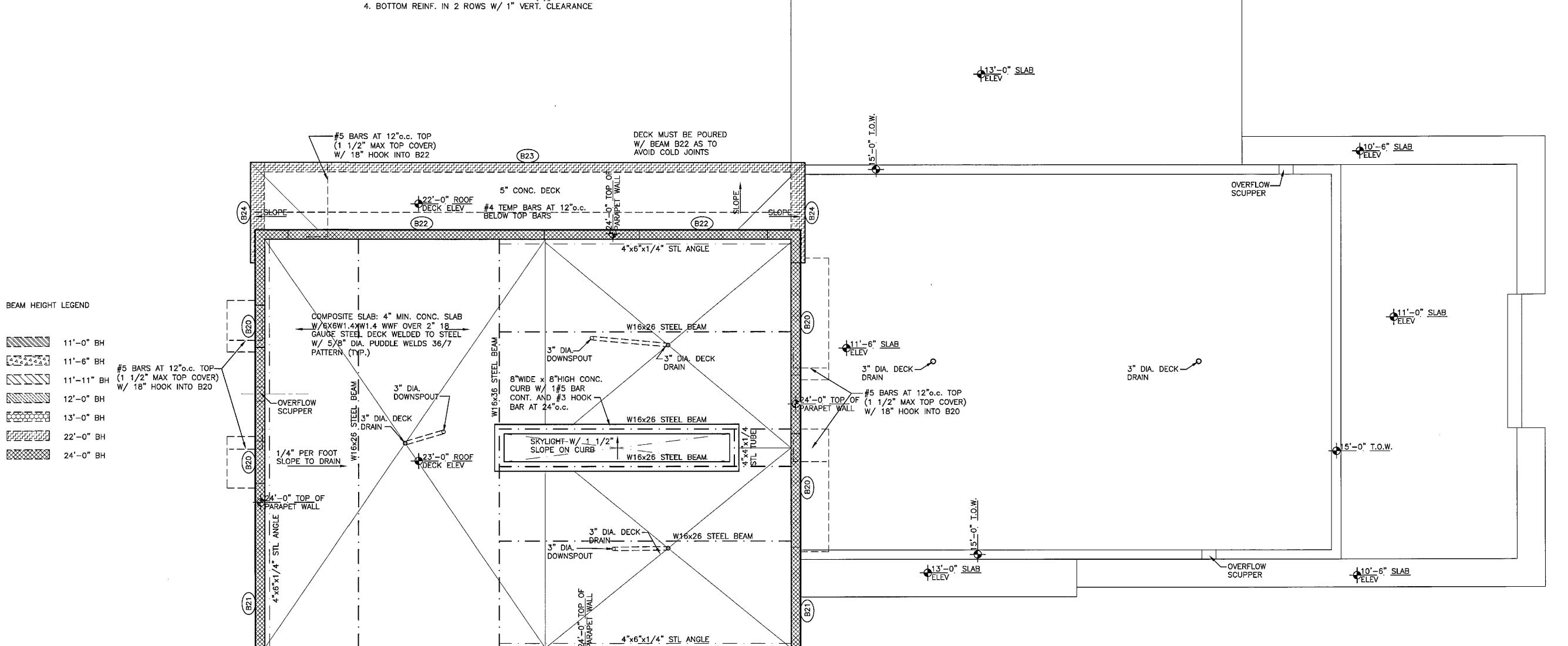
Revisions:

2-26-20 PERMIT SET

Sheet Title:

2ND FLOOR WALL REINF.

Scale: 1/4"=1'-0"	
Comm.: 19-024	Date : 8-23-19
Drawn : CRA	Checked : MEM


Sheet No.

		l	CONC	RETE E	BEAM SCH	HEDULE (fc=4,000 PSI, U.N.O.)
BEAM	TOP OF		REINFO	DRCING	STIRRUPS	
No.	BEAM ELEV.	SIZE	воттом	TOP CONT.		REMARKS
	LOWER BEAM	AS				
B01	11'-0"	8"x12"	2 #6	2 #6	#3 AT 4" o.c.	SEE DETAIL
B02	12'-0"	8"x24"	2 #6	2 #5	#3 AT 12" o.c.	2#5 BARS MID
B03	12'-0"	8"x24"	2 #6	2 #5	#3 AT 12" o.c.	2#5 BARS MID, SEE DETAIL
B04	12'-0"	8"x24"	2 #7	2 #6	#3 AT 9", o.c.	2#5 BARS MID
B05	11'-6"	12"x18"	3 # 6	3 #7	#3 AT 7" o.c.	2#5 BARS MID
B06	11'-11"	8"x23"	2 #5	2 #5	#3 AT 12" o.c.	2#5 BARS MID
B07	11'-11"	8"x23"	2 #6	2 #5	#3 AT 9" o.c.	2#5 BARS MID
B08	11'-11"	8"x23"	2 #6	2 #5	#3 AT 9" o.c.	2#5 BARS MID, SEE DETAIL
B09	11'-11"	12"x12"	3 #5	3 #5		
B10	11'-11"	8"x12"	2 #5	2 #5		
B11	11'-11"	12"x23"	3 # 6	3 # 5	#3 AT 9" o.c.	2#5 BARS MID
B12	13'-0"	16"x36"	3 #7	3 # 6	#3 AT 18" o.c.	2 ROWS 2#5 BARS MID
B13	13'-0"	8"x36"	4 #7	2 #6	#3 AT 14" o.c.	2 ROWS 2#5 BARS MID, 4 AT BOTTOM
B14	13'-0"	12"x36"	3 # 6	3 #5	#3 AT 14" o.c.	2 ROWS 2#5 BARS MID
B15	13'-0"	12"x12"	3 # 5	3 # 5		
B16	12'-0"	12"x10"	3 # 5	3 # 5		W/ STEEL BEAM BELOW
B17	8'-0"	12"x12" MIN.	3 # 5	3 # 5		ADD 2#5 BARS BOTTOM AT ANGLE
B18	12'-0"	12"x12"	3 # 5	3 # 5		
	UPPER BEAM	IS		"		·
B20	24'-0"	8"x36"	2 #6	2 #5	#3 AT 18" o.c.	2#5 BARS MID, SEE DETAIL
B21	24'-0"	8"x24"	2 #6	2 #5		2#5 BARS MID
B22	24'-0"	8"x36"	2 #7	2 #5	#3 AT 18" o.c.	2 ROWS 2#6 BARS MID
B23	22'-0"	8"x12"	2 #6	2 #5		
B24	22'-0"	8"x12"	3 #2	2 #5		
	SLAB BEAMS					
SB1	11'-0"	18"x6 1/2"	2 #5	2 #5		
SB2	11'-0"	18"x7"	3 # 5	3 # 5		

1. ALL BEAMS SHALL HAVE #3 STIRRUPS AT 24"o.c. MAX. U.N.O.
2. CONCRETE BEAM DEPTHS VARY +2" FOR MASONRY OPENING REQUIREMENTS. REDUCTION IN BEAM

DEPTH MUST BE APPROVED BY ENGINEER PRIOR TO FORMING BEAM.

3. ALL BEAMS OVER 24" DEEP TO HAVE (2)#5 MID BARS PER 12" OF DEPTH

(B21)

OVERFLOW SCUPPER

(B20)

2" 18GA STEEL DECK TO BE 3 SPAN CONTINUOUS.
FOR SPANS LESS THAN 3, SHORE DECK AT MIDSPAN
WITH 4x4 AGAINST UNDERSIDE OF DECK AND
POST—SHORE AT 48"o.c. PRIOR TO POUR. STEEL
BEAMS TO BE SHORED AT MIDSPAN W/ POST SHORE.
ALL SHORING MUST BE IN PLACE PRIOR TO POUR

(B20)

(B20)

(B21)

(B20)

 $U P P E R F R A M I N G <math display="block">P_{\text{SCALE: 1/4"} = 1'-0"}$

VILLAGE ARCHITECTS AIA

400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469 Phone: 561-743-4959

www.Village-Architects.com AA26001195

Fax: 561-743-1225

JRLINGHAM RESIDENCE
11802 ACME ROAD
WELLINGTON, FLORIDA

Seal:

Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc.

Copyright © 2020
Village Architects AIA
All rights reserved.

These drawings are the
Property of the architect
and are not to be used
for any other projects
except by agreement with
The architect in writing.

Consultant:

MCR PROFESSIONAL

ENGINEERING, INC.

CERTIFICATE OF AUTHORIZATION # 26967

3733 Atlanfic Road
Palm Beach Gardens, FL 33410
PH: (561) 863-3393

MICHAEL BABER

FLORIDA PROFESSIONAL ENGINEER, 52575

Revisions :

2-26-20 PERMIT SET

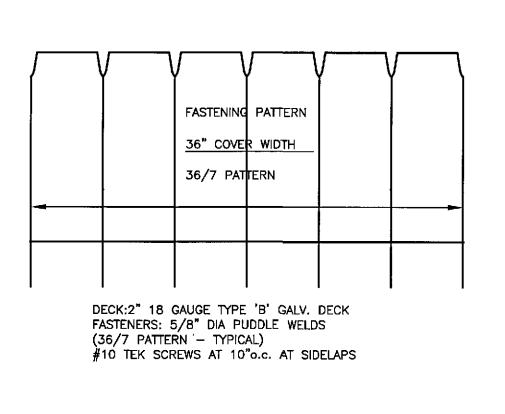
Sheet Title:

UPPER FRAMING PLAN

Scale: 1/4"=1'-0"

 Comm. :
 Date :

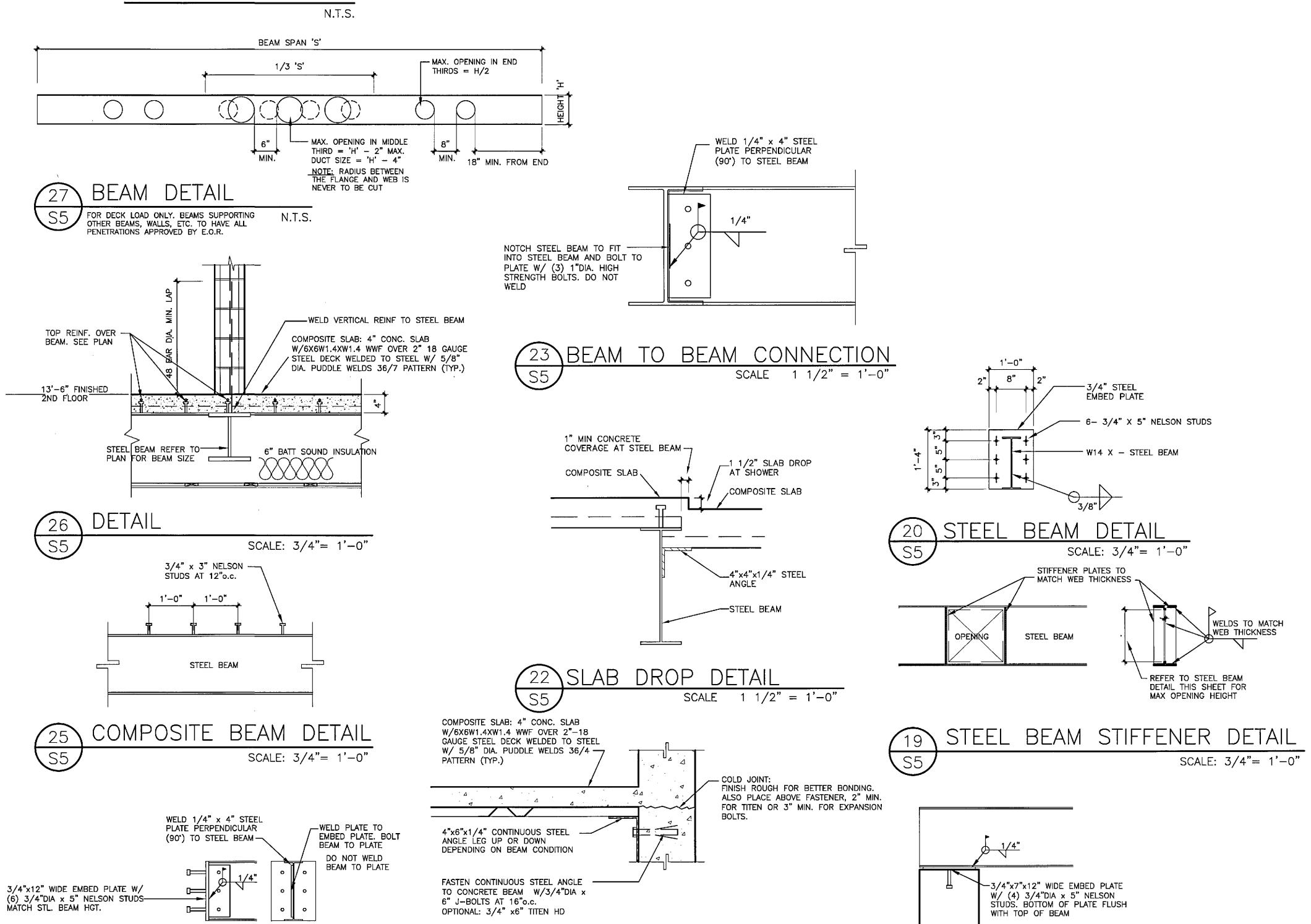
 19-024
 8-23-19


 Drawn :
 Checked :

 CRA
 MEM

Sheet No.

NO PENETRATIONS OR NOTCHES SHALL BE MADE IN ANY STRUCTURAL MEMBER INCLUDING CONCRETE BEAMS AND COLUMNS, MASONRY BLOCK AND STEEL BEAMS WITHOUT WRITTEN APPROVAL BY THE ENGINEER OF RECORD.


S4

DECK ATTACHMENT

ELEVATION

SCALE: 3/4"= 1'-0"

STEEL ANGLE DETAIL

SCALE: 1 1/2"= 1'-0"

ARCHITECTS AIA 400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469

Phone: 561-743-4959 Fax: 561-743-1225

www.Village-Architects.com AA26001195

NOTE
USE 25" OVER LAP FOR

SCALE

1 1/2"=1'-0"

1 1/2"=1'-0"

TOP OF STRUCTURAL

SLAB, COORDINATE

1 1/2"=1'-0"

SCALE: 3/4"= 1'-0"

w/SCHED. 1/4"

STRUCTURAL CONCRETE

STRUCTURAL DRAWINGS FOR SIZE AND REINF.

SLAB. REFER TO

-2 # 5 BARS TOP 5 BARS BOTTOM -

DOWN POUR DETĂĬĹ

- HIM/i

ANGLED BASE PLATES AND TOP PLATES

TYPICAL T.S.RECTANGULAR TOP PLATE

TYPICAL T.S.RECTANGULAR BASE PLATE

1 1/2"=1'-0"

BURLINGHAM RESIDENCE
11802 ACME ROAD
WELLINGTON, FLORIDA

STANDARD

5 BAR IN GROUT FILLED CELL AT 8'

1/2" = 1'-0"

4"x4"x1/4" OR 3 1/2"x3 \1/2"x1/4" STEEL TUBE COLUMN SEE PLAN & SCHEDULE FOR SIZE & LOCATION

— 6"x12"x1/2" TOP PLATE

(3) 3/4"x6" NELSON STUDS AT TOP PLATE

4"x4"x1/4" OR 3 1/2"x3
1/2"x1/4" STEEL TUBE COLUMN
SEE PLAN & SCHEDULE FOR
SIZE & LOCATION

-4"x4"x1/4" OR 3 1/2"x3

1/2"x1/4" STEEL TUBE COLUMN SEE PLAN & SCHEDULE FOR SIZE & LOCATION

_(4) 3/4"x6" NELSON STUDS

4"x4"x1/4" OR 3 1/2"x3

1/2"x1/4" STEEL TUBE COLUMN SEE PLAN & SCHEDULE FOR

10"x10"x6"x1/2" BASE PLATE W/(5) / 3/4" DIA x6"

NELSON STUDS

Seal:

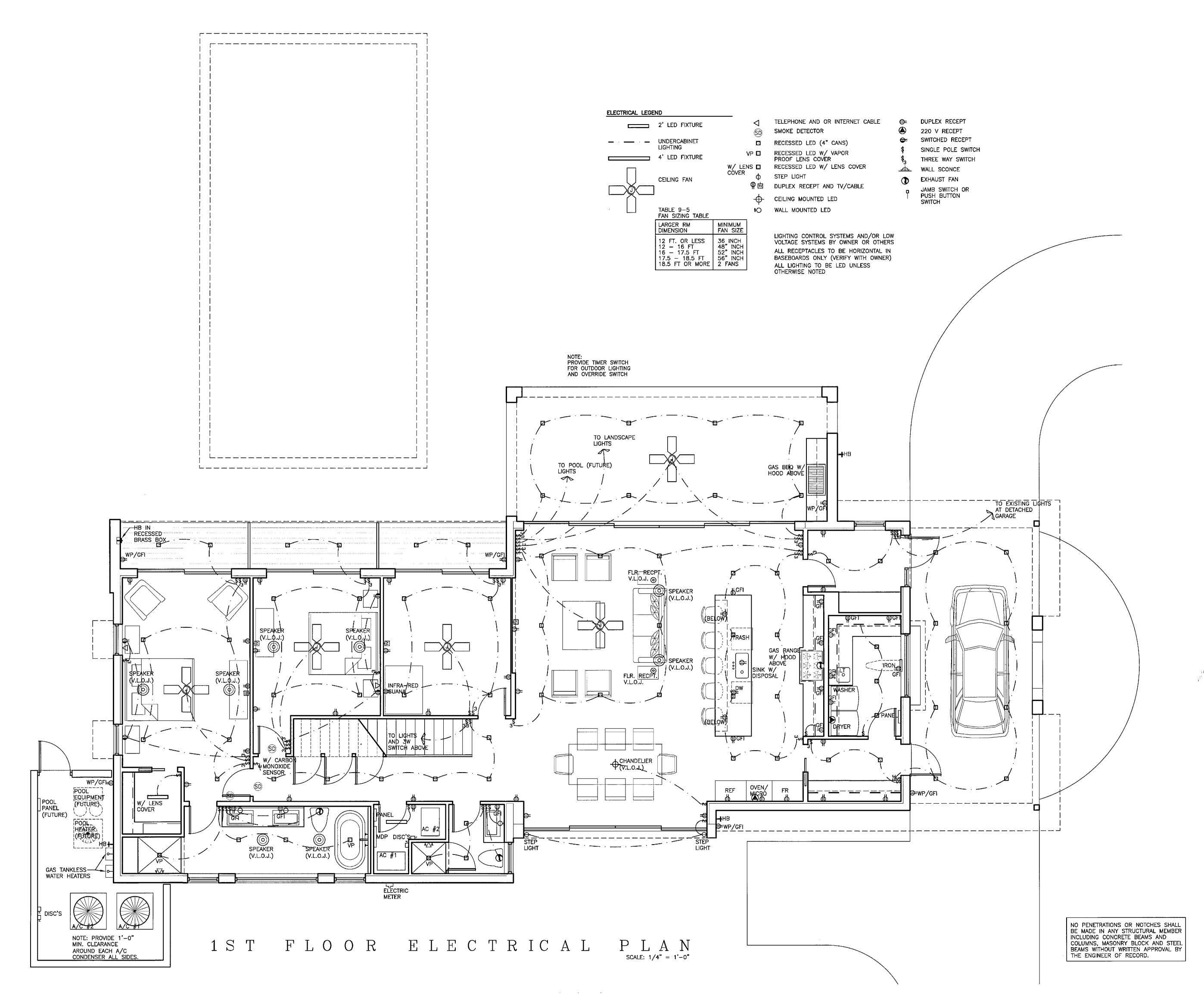
Mitchell E. Miller Florida License No. AR91772 As Principal of Village Architects AIA, Inc.

Copyright © 2020 Village Architects AIA All rights reserved. These drawings are the Property of the architect and are not to be used

for any other projects except by agreement with The architect in writing. Consultant:

MCR PROFESSIONAL ENGINEERING, INC. CERTIFICATE OF AUTHORIZATION # 26967 3733 Atlantic Road Palm Beach Gardens, FL 33410 _ ĴPĤ: (561) 863-3393 📑

MICHAEL BABER FLORIDA PROFESSIONAL ENGINEER, 52575


Revisions: 2-26-20 PERMIT SET

STRUCTURAL **DETAILS**

Sheet Title:

Scale: 1/4"=1'-0" Comm.: Date: 19-024 8-23-19 Checked: Drawn: MEM CRA

Sheet No.

VILLAGE
ARCHITECTS AIA

400 N CYPRESS DRIVE, SUITE 21 Tequesta, FL 33469 Phone: 561-743-4959 Fax: 561-743-1225

www.Village-Architects.com
AA26001195

AA26001195

VGHAM RESIDENCE
11802 ACME ROAD
ELLINGTON, FLORIDA

Seal:

Mitchell E. Miller

Morida License No. AR91772

As Principal of

Village Architects AIA, Inc.

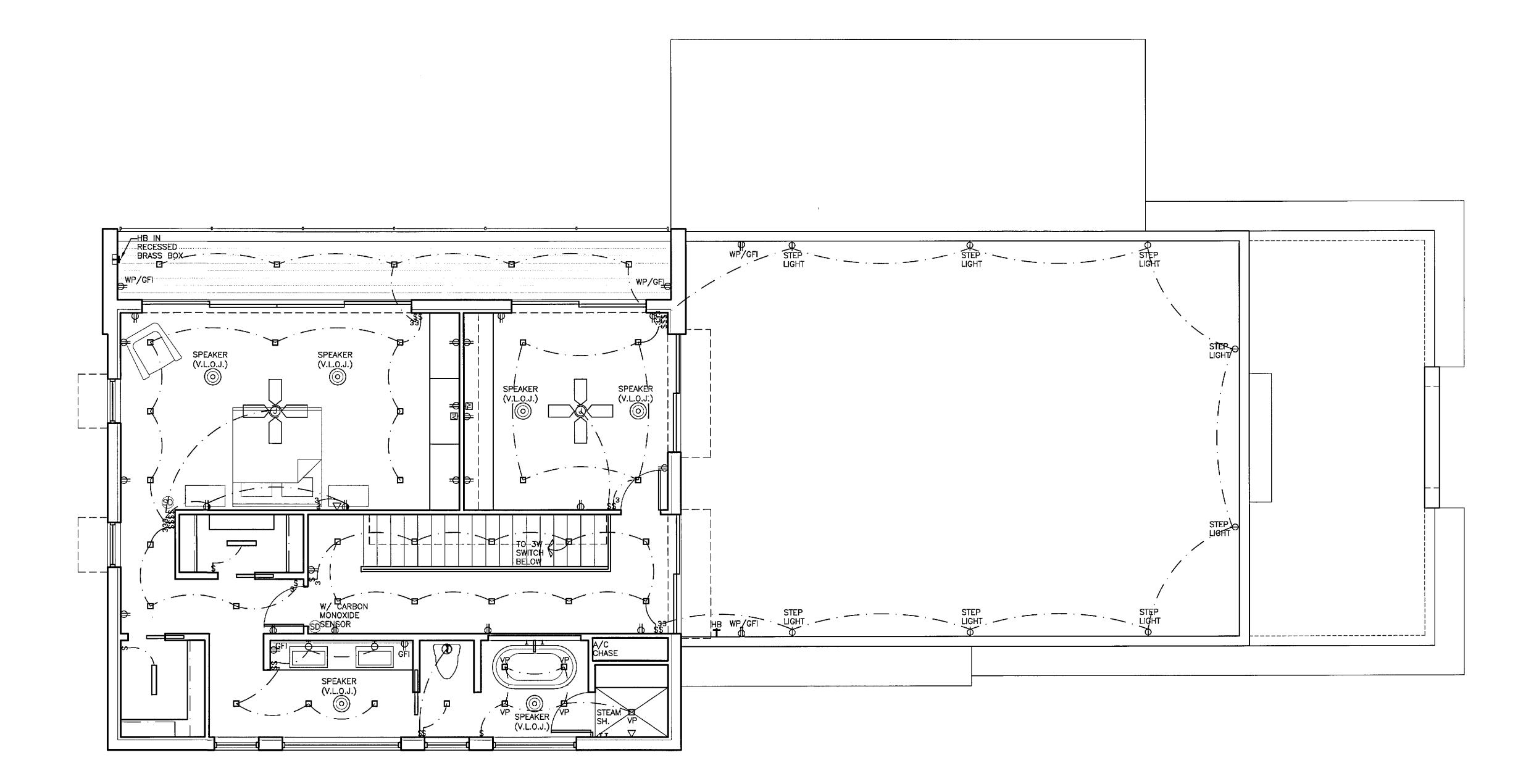
Copyright © 2020
Village Architects AIA
All rights reserved.
These drawings are the
Property of the architect
and are not to be used
for any other projects
except by agreement with
The architect in writing.

Consultant:

Revisions : 2-26-20 PERMIT SET

Sheet Title:

FIRST FLOOR ELEC PLAN


Scale:
1/4"=1'-0"

Comm.: Date:
19-024 8-23-19

Drawn: Checked:
CRA MEM

Sheet No.

E1

Phone: 561-743-4959 Fax: 561-743-1225 www.Village-Architects.com

AA26001195

UKLINGHAM KESIDENC 11802 ACME ROAD WELLINGTON, FLORIDA

Seal:

Mitchell E. Miller
Florida License No. AR91772
As Principal of
Village Architects AIA, Inc.

Copyright © 2020
Village Architects AIA
All rights reserved.

These drawings are the
Property of the architect
and are not to be used
for any other projects
except by agreement with
The architect in writing.

Consultant:

Revisions:
2-26-20 PERMIT SET

Sheet Title:

SECOND FLOOR ELEC PLAN

Scale: 1/4"=1'-0"

Comm.: Date:
19-024 8-23-19

Drawn: Checked:
CRA MEM

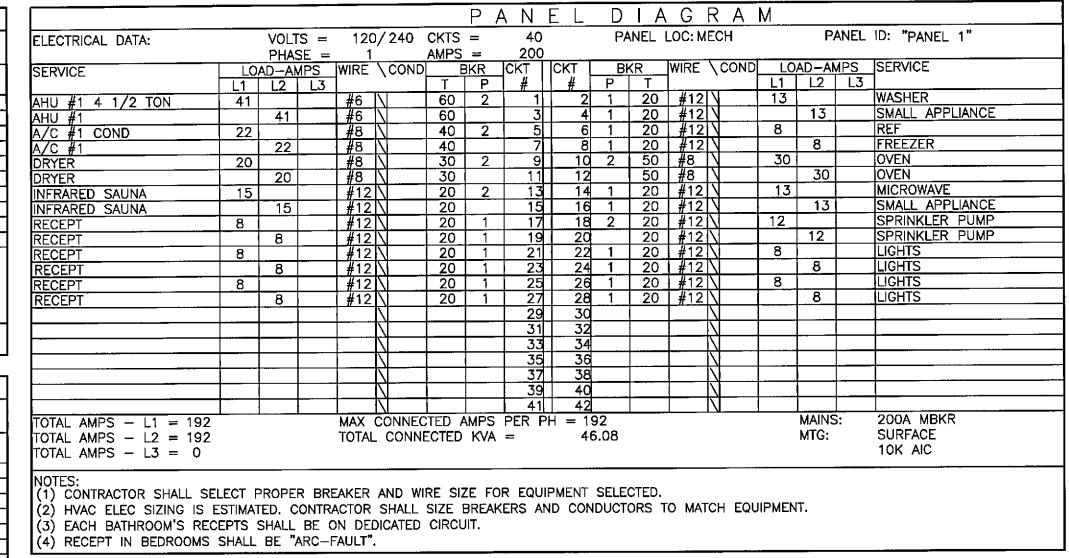
Sheet No.

EQUIPMENT GROUNDING 1. PROVIDE EQUIPMENT GROUNDS IN ACCORDANCE WITH NEC TABLE 250.122

BKR SIZE GROUND WIRE
15A #14
20A #12
30A #10
40A #10
60A #10
100A #8

200A

GROUND SHALL BE ISOLATED FROM NEUTRAL IN ALL PANELS EXCEPT MAIN.


	ONE FAMILY DWELLING UNDED FEEDER LOAD	TILO SEC 220	, 50)
1.5.461	SQ FT AT	3.00 VA/SQ	FT 10.38 KVA
6		1.50 KVA	9.00 KVA
1	LAUNDRY CIR AT	1.50 KVA	1.50 KVA
1	OVEN	8.00 KVA	8.00 KVA
Ö	WATER HEATER AT	5.00 KVA	0.00 KVA
1	DISHWASHER AT	1.50 KVA	1.50 KVA
2	REFRIGERATOR AT	0.90 KVA	1.80 KVA
1	CLOTHES DRYER AT	5.00 KVA	5.00 KVA
1	POOL PUMP AT(FUTURE)	3.36 KVA	3.36 KVA
1	BLOWER MOTOR AT(FUTURE)	0.80 KVA	0.80 KVA
1	SPA PUMP AT (FUTURE)	1.20 KVA	1.20 KVA
1	ISPRINKLER PUMP AT	1.40 KVA	1.40 KVA
1	DISPOSAL AT	0.80 KVA	0.80 KVA
7	FANS AT	0.20 KVA	1.40 KVA
0	GARAGE DOOR OPERATOR	0.20 KVA	0.00 KVA
1	EXHAUST FAN	1.00 KVA	1.00 KVA
11_	INFRARED SAUNA	4.80 KVA	4.80 KVA
1	STEAM SHOWER (9kW)	14.40 KVA	14.40 KVA
1	OTHER	10.00 KVA	10.00 KVA
<u> </u>			
LEMAIN	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40%	6	10.00 KVA 26.54 KVA
13.80 16.25 MINI SI	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100%	" 100% %	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA
13.80 16.25 MINI SI	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6	" 100% %	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA
13.80 16.25 MINI SI CALCUL	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100%	100% % .1,4.3) POOL HTR)	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA
13.80 16.25 MINI SE CALCUL NIMUM SEDER NE	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE	100% % .1,4.3) POOL HTR) - PHASE	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA
13.80 16.25 MINI SI CALCUL	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE TUTRAL LOAD PER NEC SECTION	100% % .1,4.3) POOL HTR) - PHASE ON 220-22	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS
13.80 16.25 MINI SE CALCUL NIMUM SEDER NE	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT	100% % .1,4.3) POOL HTR) - PHASE	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS
13.80 16.25 MINI SE CALCUL NIMUM SE EDER NE	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE SUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 =	100% % .1,4.3) POOL HTR) - PHASE ON 220-22 = 1.50	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA
13.80 16.25 MINI SI CALCUL NIMUM S EDER NE 3,461	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 = KVA OF SUB TOTAL #2 AT 10	100% % .1,4.3) POOL HTR) PHASE ON 220-22 = 1.50	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA
13.80 16.25 MINI SECALCUL NIMUM SEDER NE 3,461	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 = KVA OF SUB TOTAL #2 AT 35% =	100% % .1,4.3) POOL HTR) PHASE ON 220-22 = 1.50	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA
13.80 16.25 MINI SECALCUL NIMUM SEDER NE 3,461	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 = KVA OF SUB TOTAL #2 AT 10 OF SUBTOTAL #3 =	100% % .1,4.3) POOL HTR) PHASE N 220-22 = 1.50 00% =	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA
13.80 16.25 MINI SECALCUL NIMUM SEDER NE 3,461	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE SUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 = KVA OF SUBTOTAL #2 AT 35% = SUBTOTAL #3 = 0 RANGE AT 70%X80% OF	100% % .1,4.3) POOL HTR)	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA 8.73 KVA
13.80 16.25 MINI SECALCUL NIMUM SEDER NE 3,461	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE OF A SUBTOTAL #2 = KVA OF SUBTOTAL #2 AT 35% = SUBTOTAL #3 = ORANGE AT 70% OF	100% % .1,4.3) POOL HTR) PHASE ON 220-22 = 1.50 00% = 12.00 5.00	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA 8.73 KVA 0.00 KVA 3.50 KVA
13.80 16.25 MINI SECALCUL NIMUM SEDER NE 3,461	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 = KVA OF SUB TOTAL #2 AT 10 OF SUBTOTAL #2 AT 35% = SUBTOTAL #3 = 0 RANGE AT 70% VARIOUS OF 1 DRYER AT 70% OF 2 REFRIGERATOR AT	100% % .1,4.3) POOL HTR) PHASE DN 220-22 = 1.50 00% = 12.00 5.00 0.90	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA 0.00 KVA 3.50 KVA 1.80 KVA
13.80 16.25 MINI SECALCUL NIMUM SEDER NE 3,461	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 AT 10 OF SUBTOTAL #2 AT 35% = SUBTOTAL #3 = ORANGE AT 70%X80% OF 1 DRYER AT 70% OF 2 REFRIGERATOR AT 1 DISHWASHER AT	100% % .1,4.3) POOL HTR) PHASE 0N 220-22 =	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA 8.73 KVA 0.00 KVA 1.50 KVA 1.50 KVA
13.80 16.25 MINI SECALCUL NIMUM SEDER NE 3,461	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 AT 10 OF SUBTOTAL #2 AT 35% = SUBTOTAL #3 = ORANGE AT 70%X80% OF 1 DRYER AT 70% OF 2 REFRIGERATOR AT 1 DISHWASHER AT 1 DISPOSAL AT	100% % .1,4.3) POOL HTR) PHASE 0N 220-22 =	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA 0.00 KVA 3.50 KVA 1.80 KVA 1.50 KVA
13.80 16.25 MINI SECALCUL NIMUM SEDER NE 3,461	DER OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 = KVA OF SUB TOTAL #2 AT 35% = SUBTOTAL #3 = ORANGE AT 70%X80% OF 1 DRYER AT 70% OF 2 REFRIGERATOR AT 1 DISHWASHER AT 1 DISPOSAL AT 7 FANS AT	100% % .1,4.3) POOL HTR) PHASE 1.50 00% = 12.00 5.00 0.90 1.50 0.80 0.20	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA 8.73 KVA 0.00 KVA 1.80 KVA 1.50 KVA 0.80 KVA
13.80 16.25 MINI SECALCUL NIMUM SECOLORIAL SECOLORIAL SECOLORIAL SECOND	10 KVA OF SUBTOTAL #1 AT DER OF SUBTOTAL #1 AT 40% KVA FROM A/C AT 100% (8. KVA HEAT AT 65% (10,5 +6 PLITS AT 100% ATED LOAD ERVICE AT 240 VOLTS SINGLE EUTRAL LOAD PER NEC SECTION SQ FT AT 3 VA PER SQ FT 6 APPLIANCE CIR AT SUB TOTAL #2 AT 10 OF SUBTOTAL #2 AT 35% = SUBTOTAL #3 = ORANGE AT 70%X80% OF 1 DRYER AT 70% OF 2 REFRIGERATOR AT 1 DISHWASHER AT 1 DISPOSAL AT	100% % .1,4.3) POOL HTR) PHASE 0N 220-22 =	10.00 KVA 26.54 KVA (12.40) KVA 13.65 KVA 0.00 KVA 50.19 KVA 210 AMPS 10.38 KVA 9.00 KVA 19.38 KVA 3.00 KVA 5.73 KVA 0.00 KVA 3.50 KVA 1.80 KVA 1.50 KVA

ELECTRICAL NOTES:

- 1. IT SHALL BE THE RESPONSIBILITY OF THE ELECTRICAL CONTRACTOR TO PRODUCE AN OPERATIONAL SYSTEM IN ACCORDANCE WITH THESE DRAWINGS.
- THE ELECTRICAL CONTRACTOR SHALL:

 OBTAIN ALL PERMITS AND PAY ALL PERMIT FEES.
 FURBISH AND INSTALL ALL EQUIPMENT FIXTURES, RECEPTACLES, CONDUIT, PANELS, ETC. SHOWN ON THESE DRAWINGS AS REQUIRED TO PRODUCE A COMPLETE AND FUNCTIONAL ELECTRICAL SYSTEM
 INSTALL AND MAKE FINAL CONNECTIONS TO ALL ELECTRICAL APPARATUS AND EQUIPMENT FURNISHED BY OTHERS.
- INSTALLATION SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE NATIONAL ELECTRICAL CODE AND ALL LOCAL CODES.
- 4. ALL WIRE SHALL BE COPPER, ALUMINUM WIRE IS NOT PERMITTED.
- PROVIDE AND ATTACH TYPE WRITTEN IDENTIFICATION CARDS FOR ALL PANELS.
 A/C UNITS SHALL BE CONNECTED BY NOT LESS THAN 2 FT OF FLEXIBLE CONDUIT.
- 7. CONTRACTOR SHALL MAINTAIN ONE SET OF "MARKED—UP" PLANS SHOWING FIELD CHANGES OR CORRECTIONS. THE "MARKED—UP" SET OF PLANS SHALL BE RETURNED TO THE ARCHITECT AT THE END OF THE JOB.
- 8. INSTALL NON-FUSED DISCONNECTS AT ALL AIR CONDITIONING UNITS IN ACCORDANCE WITH LOCAL BUILDING CODES AND THE REQUIREMENTS OF THE EQUIPMENT MANUFACTURER.
- 9. ALL ELECTRICAL EQUIPMENT INSTALLED ON THE EXTERIOR OF THE BUILDING SHALL BE NEMA 3 UNLESS COVERED WITH A WATERPROOF ENCLOSURE.
- 10. d) ALL BRANCH CIRCUITS SUPPLYING OUTLETS INSTALLED IN DWELLING UNIT FAMILY ROOMS, KITCHENS, DINING ROOMS, LIVING ROOMS, PARLORS, LIBRARIES, DENS, BEDROOMS, SUNROOMS, RECREATION ROOMS, CLOSETS, HALLWAYS, LAUNDRY, OR SIMILAR ROOMS SHALL BE PROTECTED BY A LISTED 'ARC—FAULT' CIRCUIT INTERRUPTER COMBINATION TYPE INSTALLED TO PROVIDE PROTECTION OF THE BRANCH CIRCUIT NOTE: SOME AREAS REQUIRE BOTH AFCI AND GFCI PROTECTION. OUTLETS INCLUDE RECEPTACLES, LIGHTS, FANS AND SMOKE DETECTORS. NEC 210.12, FBC RE E3902.16.
 b) TAMPER RESISTANT RECEPTACLES (NEC 406.12, FBC RE E4002.14) ARE REQUIRED IN DWELLING UNITS IN ALL AREAS AS SPECIFIED IN NEC 2014 NEC 210.52, ALL 125 VOLT, 15 AND 20 AMP RECEPTACLES.
- 11. RECEPTACLE IN EACH BATHROOM SHALL BE ON A DEDICATED 20 AMP CIRCUIT IN ACCORDANCE WITH NEC 210-52D AND 210.11C3.
- 12. SMOKE DETECTORS IN SLEEPING AREAS MUST BE "ARC-FAULT" PROTECTED.
- 13. CHANGES TO THIS DESIGN BY THE ELECTRICAL CONTRACTOR SHALL BE APPROVED BY THE ARCHITECT PRIOR TO MAKING THE CHANGES.

EL EATOLA L. D. L.							<u>P</u> /		<u>E</u> L				<u>R A</u>	IVI			
ELECTRICAL DATA:			.TS = .SE =			CKTS AMPS		20 400		PA	ANEL	LOC: M	ECH		Р	ANEL	ID:MAIN DISTRIBUTION PANEL
SERVICE	LO L1	AD-A L2		WIRE '	CON	D [BKR P	CKT #	CKT #	BI P	KR I T	WIRE	CON	D LC L1	AD-A	MPS L3	SERVICE
PANEL 1	192			#2/0	$\overline{\mathbf{n}}$	200		1		2	200	#2/0	IX	143	<u> </u>		PANEL 2
PANEL 1	192	192	 	#2/0		200		3	4		200	#2/0 #2/0	+1	175	143		PANEL 2
POOL PANEL (FUTURE)	XX	192		#2/		100		5		2	100	#2/	11	XX	175	┼──	EXISTING GARAGE PANE
OOL PANEL	^^	XX	+	#2/		100		ᅱ	8		100	#2/	 	 ^^-	XX	 	EXISTING GARAGE PANE
002 174422			+	π-/-	++-	+ 100	-	9	10		100	π2/	1	-	 ^^		EXISTING GAIGNOE TANK
					++-	+		11	+			1	 		1	 	
					++-	+	-	13				 	11	+	<u> </u>	 	
			 		++-			15				 	 	_	<u> </u>	 	<u> </u>
			 		++-	+		17			-	1	 		 		
			 		+1-			19				 	\mathbb{H}	+	1	├	
OTAL AMPS - L1 =			<u>. </u>	MAY C	ONNE	CTED A	MPS	PER P			<u>L</u>	1	1.31		MAINS	<u>. </u>	400A MLO
OTAL AMPS - L2 = OTAL AMPS - L3 =				TOTAL	CONN	IECTED	KVA	=							MTG:		SURFACE
OTES: 1) CONTRACTOR SHALL	SELECT F	ROPE	R BRE	EAKER /	AND W	IRE SIZ	ZE FO	R EQUI	PMENT	SELE	CTED.	·					
										_		_	_				
							Ρ /	A N	E L	D	ÎΑ	G	R A	М			
ELECTRICAL DATA:			TS = SE =		/240	CKTS AMPS	=	30							NT P	ANEL	ID: POOL SUBPANEL (FUTURE)
		PHA D-AN	SE = MPS			AMPS BI	= = KR	30 100 CKT		PA Bk	ANEL	LOC:P	OOL E		AD-AN	/IPS	ID: POOL SUBPANEL (FUTURE) SERVICE
ERVICE	L1	PHA	SE = MPS	WIRE \	CON	AMPS BI T	= = KR P	30 100	CKT #	P/ B/ P	ANEL KR	LOC:PO	CON	QUIPME D LO. L1			(FUTURE) SERVICE
ERVICE OOL PUMP		PHA ND-AN L2	SE = MPS	1 WIRE \ #12	CON	AMPS BI T 20	= = KR	30 100 CKT # 	CKT # 2	PA Bk	ANEL KR T 50	LOC:PO	CON		AD-AN	/IPS	(FUTURE) SERVICE POOL HEATER
ERVICE OOL PUMP	12	PHA D-AN	SE = MPS	1 WIRE \ #12 \ #12 \	CON	AMPS T 20 20	= = <r P 2</r 	30 100 CKT # 1 3	CKT	PA Bk P 2	KR T 50	LOC:POWIRE	CON	QUIPME LO L1 25	AD-AN	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER
POOL PUMP POOL PUMP POOL PUMP POOL PUMP	L1	PHA AD-AN L2 12	SE = MPS	#12 #12 #12 #12	CON	AMPS	= = KR P	30 100 CKT # 1 3 5	CKT # 2 4 6	PA BA P 2	KR T 50 50 20	WIRE #8 #8 #12	CON	QUIPME D LO. L1	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8
POOL PUMP POOL PUMP PA PUMP PA PUMP	12	PHA ND-AN L2	SE = MPS	#12 #12 #12 #12 #12	CON	AMPS D BI T 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7	CKT # 2 4 6	PA Bk P 2	KR T 50 50 20 20	WIRE #8 #8 #12 #12	CON	D LO L1 25	AD-AN	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR
POOL PUMP POOL PUMP SPA PUMP SPA PUMP SPA PUMP SPA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= = <r P 2</r 	30 100 CKT # 1 3 5 7	CKT # 2 4 6 8	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	QUIPME LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
ERVICE POOL PUMP POOL PUMP PA PUMP PA PUMP PA BLOWER	12	PHA AD-AN L2 12	SE = MPS	#12 #12 #12 #12 #12	CON	AMPS D BI T 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9	CKT # 2 4 6 8 10	PA BA P 2	KR T 50 50 20 20	WIRE #8 #8 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR
ERVICE POOL PUMP POOL PUMP PA PUMP PA PUMP PA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9 11	CKT # 2 4 6 8 10 12	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
POOL PUMP POOL PUMP PA PUMP PA PUMP PA PUMP PA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9 11 13	CKT # 2 4 6 8 10 12 14	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
ERVICE POOL PUMP POOL PUMP PA PUMP PA PUMP PA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9 11 13 15	CKT # 2 4 6 8 10 12 14 16	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
ERVICE OOL PUMP OOL PUMP PA PUMP PA PUMP PA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9 11 13 15 17	CKT # 2 4 6 8 10 12 14 16 18 20	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
ERVICE POOL PUMP POOL PUMP PA PUMP PA PUMP PA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9 11 13 15 17 19	CKT # 2 4 6 8 10 12 14 16 18 20 22	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
ERVICE POOL PUMP POOL PUMP PA PUMP PA PUMP PA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9 11 13 15 17 19 21 23	CKT # 2 4 6 8 10 12 14 16 18 20 22 24	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
ERVICE POOL PUMP POOL PUMP PA PUMP PA PUMP PA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9 11 13 15 17 19 21 23	CKT # 2 4 6 8 10 12 14 16 18 20 22 24 26	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
POOL PUMP POOL PUMP SPA PUMP SPA PUMP SPA PUMP SPA BLOWER	12	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12	CON	AMPS BI T 20 20 20 20 20 20	= KR P 2	30 100 CKT # 1 3 5 7 9 111 13 15 17 19 21 23 25	CKT # 2 4 6 8 10 12 14 16 18 20 22 24 26 28	PA BA P 2	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	/IPS	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS
POOL PUMP POOL PUMP SPA PUMP SPA PUMP SPA BLOWER SPA BLOWER	12 12 8	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12 #12	CONI	AMPS D BI T 20 20 20 20 20 20	= = KR P 2	30 100 CKT # 1 3 5 7 9 11 13 15 17 19 21 23 25 27	CKT # 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	P/ Br P 2 1 1 1 1	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25 4 8	APS L3	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS POOL LIGHTS
ELECTRICAL DATA: SERVICE POOL PUMP POOL PUMP SPA PUMP SPA PUMP SPA BLOWER SPA BLOWER FOTAL AMPS - L1 = 8° FOTAL AMPS - L2 = 8° FOTAL AMPS - L3 = 0° FOTAL	11 11 12 8 8	PHA AD—AN L2 12	SE = MPS	#12 #12 #12 #12 #12 #12 #12 #12 #MAX	CONI	AMPS D BI T 20 20 20 20 20 20 CTED A	= = KR P 2 2 2 2	30 100 CKT # 1 3 5 7 9 11 13 15 17 19 21 23 25 27	CKT # 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 H = 81	P/ Br P 2 1 1 1 1	KR T 50 50 20 20 20 20	WIRE #8 #8 #12 #12 #12	CON	D LO L1 25	AD-AM L2 25	APS L3	(FUTURE) SERVICE POOL HEATER POOL HEATER JANDI RS8 SALT GENERATOR POOL LIGHTS

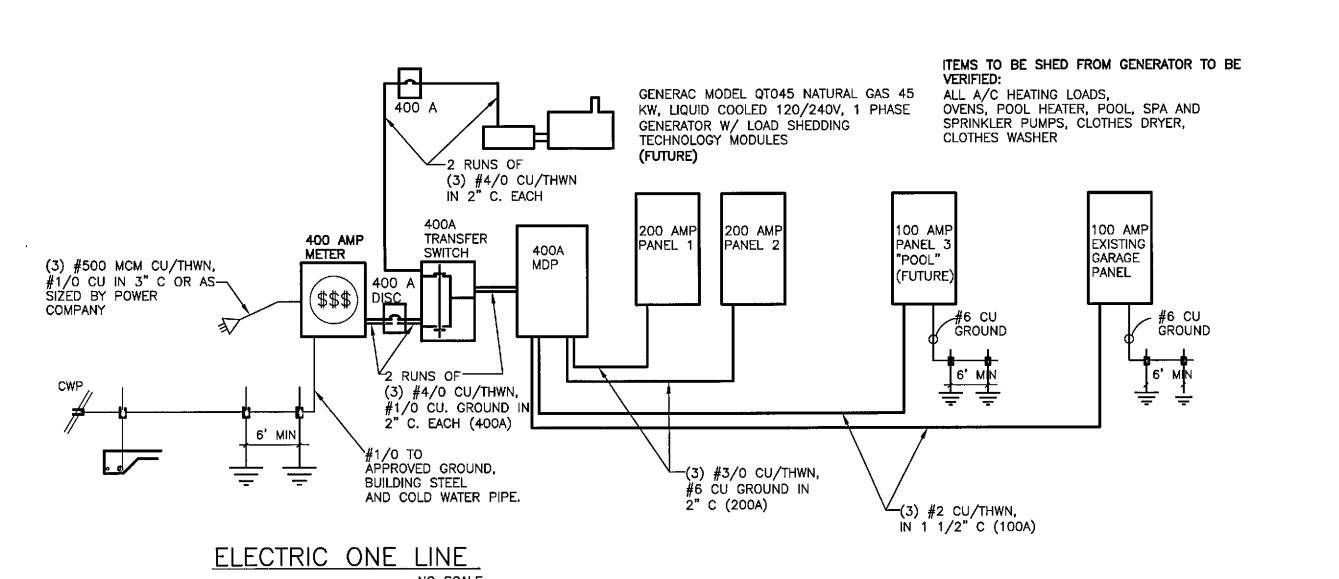
ELECTRICAL DATA:		VOLTS = 120/240 CKTS = 40 PANEL LOC: LAUNDRY PANEL ID: "PA										4NEL 2"	•						
			SE =	1	•	AMPS		200											
SERVICE	LO.	AD-AN	1PS	WIRE	COND) <u> </u>	3KR	CKT	CKT		KR	WIRE \	COND		AD <u>-Al</u>		SERVIC	Æ	
	L1	L2	L3			T	P	#	#	Р	T	<u> </u>		<u>L1</u>	L2				
AHU #2 2 1/2 TON	24			#8		50	2	1	2	2	60	#6	<u> </u>	50				SHOWE	
AHU #2		24		#8	\	50		3	4		60		<u> </u>		50			SHOWE	<u>.R 9k</u>
A/C #2 COND	17			#10		30	2	5	6	_1_	20			8			LIGHTS		
A/C #2		17		#10		30_		7	8	1	20				8		LIGHTS		
DISPOSAL	13			#12		20	1	9	10	1	20	#12		8			LIGHTS		
DISHWASHER		13		#12	\	20	1	11	12	_ 1	20	#12			8		LIGHTS		
RECEPT	8			#12		20	1	13	14	1	20			8			LIGHTS		
RECEPT		8		#12		20	1	15	16	1	20	#12			8		LIGHTS		
RECEPT	8			#12		20	1	17	18	1	20	#12		8			LIGHTS		
RECEPT		8		#12	N	20	1	19	20	1	20	#12			8		LIGHTS		
RECEPT	8			#12		20	1	21	22										
RECEPT		8		#12		20	1	23	24										
								25	26										
	·							27	28			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					<u> </u>		
								29	30										
								31	32										
·								33	34	•			1						
								35	36			\							
								37	38		1								
								39	40										
								41	42										
FOTAL AMPS - L1 = 143				MAX	CONNEC	CTED A	MPS	PER PI	+ = 14	-3		***			MAINS	3:	200 M	iKR	
FOTAL AMPS - L2 = 143				TOTAL	CONN	ECTED	KVA	=	34	.32					MTG:		SURFA	CE	
FOTAL AMPS - L3 = 0																	10K A	.IC	

BURLINGHAM RESIDEN

11802 ACME ROAD

WELLINGTON, FLORIDA

FIRST FLORIDA DEVELOPMENT


Mitchell E. Miller
Florida License No. AR91772
As Principal of
Village Architects AIA, Inc.

Copyright © 2020
Village Architects AIA
All rights reserved.

These drawings are the
Property of the architect
and are not to be used
for any other projects
except by agreement with

The architect in writing.

Consultant:

Sheet Title:
ELECTRICAL
SCHEDULES

Revisions:

2-26-20 PERMIT SET

Scale:
NONE

Comm.: Date:
19-024 8-23-19

Drawn: Checked:
CRA MEM

Sheet No.

E3
MAR 0 4 2020